Effective Quantum Field Theories  

In General > s.a. Effective Field Theories; techniques in quantum field theory.
* Idea: Effective equations describe quantum corrections on the evolution of a state as the back-reaction of moments on the expectation values of the state.
@ Introductions and reviews: Burgess hp/98-conf; Ecker ht/05-en; Weinberg a0908-proc [past and future].
@ General references: Schwinger PR(51); DeWitt PRP(75); Ellicott & Toms NPB(89) [covariant under general field redefinitions]; Blau et al IJMPA(91)-a0906 [one-loop effective action in a constant electromagnetic field]; D'Hoker & Weinberg PRD(94)hp; Scharnhorst IJTP(97) [functional integral equation]; Dalvit PhD(98)ht; Barvinsky & Mukhanov PRD(02)ht [calculation of non-local part]; Branchina et al EPJC(04)ht/03 [and quantum equations of motion]; Raab mp/07 [representation]; Shore NPB(07) [superluminality and UV completion]; Schakel 08 [in condensed matter]; Donoghue a0909-conf [limitations]; Polonyi & Siwek PRD(10) [boundary conditions and consistency]; Nair PRD(12)-a1109 [relationship between the quantum effective action and the wave functions of a field theory, and the YM case]; Toms 07; Polonyi PRD(14)-a1407 [closed-time-path extension]; Hamilton a1502 [two constructions].
@ Effective potential: Norimatsu et al PRD(87); O'Connor & Stephens PRD(88); Hochberg et al cm/99, PRE(99)cm [stochastic partial differential equations], PhyA(00)cm/99 [massless KPZ equation], JSP(00)cm/99 [reaction-diffusion-decay system].
@ Effective field theory in curved spacetime: Kleinert & Chervyakov IJMPA(03); Shapiro ht/04-proc [applications]; Fucci JMP(09)-a0906 [scalar and spinor field electrodynamics].
@ Heat-kernel method: Antonsen & Bormann ht/97 [Schwarzschild spacetime, s = 0, 1/2, 1], ht/99 [FLRW models, s = 0, 1/2, 1]; Avramidi NPPS(02)mp/01 [rev], LNP(10)-a0812 [for quantum gravity].
@ Conceptual: Castellani SHPMP(02)phy/01 [and reductionism].
@ Related topics: Georgi PRL(07) + pw(07)jun ['unparticle' stuff]; Dunne et al PRD(11)-a1103 [spinor fields, small-mass limit]; Torrieri a1306 [coarse-graining and unitarity violations]; Codello et al EPJC(16)-a1505 [effective action from the functional renormalization group equation]; > s.a. anomalies; heat; physical theories.

At Finite Temperature > s.a. quantum field theory in curved backgrounds.
@ General references: Zinn-Justin hp/00-ln [intro]; Sarkar et al IJP(02)ht/00 [spectral representation of propagator]; Boyanovsky NJP(15)-a1503 [out of equilibrium].
@ Integrable field theories: Mussardo JPA(01)ht; Delfino JPA(01) [1-point functions].
@ Other theories: Toms cm/96 [and BEC]; Añaños JMP(06) [scalar φ6 field in 2+1 dimensions].

Quantum Gravity > s.a. action for general relativity; formulations of general relativity; loop quantum cosmology; semiclassical quantum gravity.
@ General references: DeWitt PRL(81); Huggins et al NPB(87); Odintsov PLB(91); Buchbinder et al 92; Vilkovisky CQG(92); Donoghue PRD(94)gq [quantum corrections], ht/94-proc [intro], HPA(96)gq, gq/97-MG8 [review]; DeWitt & Molina-Paris MPLA(98)ht; Burgess LRR(04) [rev]; Avramidi ATMP(10)-a0903; Espriu & Puigdomenech a0910-ln [quantum corrections to Newton's law]; Burgess a0912-fs; Codello NJP(12)-a1108 [with N minimally coupled matter fields]; Donoghue AIP(12)-a1209 [pedagogical introduction]; Calmet IJMPD(13)-a1308-GRF; Codello & Jain CQG(16)-a1507 [covariant effective field theory].
@ One-loop effective theory: Espriu et al PLB(05)gq [and cosmology]; > s.a. covariant quantum gravity.
@ Effective average action approach: Daum & Reuter PoS-a0910 [effective potential]; Satz et al PRD(10)-a1006 [and low-energy effective action]; > s.a. quantum-gravity renormalization.
@ Applications: Hartle PRL(77) [graviton production in the early universe]; Codello & Jain CQG(16)-a1507 [cosmology].
@ Related topics: Reuter PRD(98)ht/96 [evolution equation]; Bonanno & Reuter PRD(02)ht/01, PLB(02)ap/01 [and quantum cosmology, renormalization]; Manrique et al AP(11) [bimetric truncation]; > s.a. emergent gravity; modified newtonian gravity.

Other Theories > s.a. yang-mills theories.
@ Scalar fields: Haba ht/02 [λφ4 in quantized metric]; Refaei & Takook MPLA(11)-a1109 [one-loop effective action, in Krein-space quantization]; Bojowald & Brahma a1411 [canonical derivation of effective potentials].
@ In QED: Dittrich & Reuter 85; Gies PRD(99)hp [at finite T], PRD(00)hp/99 [finite T and B]; Refaei & Takook PLB(11)-a1109 [one-loop effective action, in Krein-space quantization]; Dittrich a1401 [and QCD, in the one-loop approximation].
@ In QCD: Mocsy et al hp/04-conf; > s.a. QCD phenomenology.
@ In Yang-Mills gauge theory: Frolov & Slavnov NPB(90); DeWitt & Molina-Paris ht/95; Freyhult IJMPA(02) [SU(2)]; Haba ht/02 [in quantized metric]; Arnone et al PRD(03)ht/02 [gauge-invariant]; Bilal AP(08) [gauge invariance]; Avramidi ATMP(10)-a0903; Dietrich PRD(09)-a0904 [and fluctuations around classical configurations].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 4 feb 2017