Radiation Reaction and Self-Force |

**In General**
> s.a. electromagnetism; classical particles;
particle effects; QED.

* __Radiation reaction__: The effect
on a radiation-emitting particle due to the fact that energy, momentum and
angular momentum are carried away by the radiation; It can be described in terms
of a "self-force" (Newton's third law does not hold for an accelerated
charge), and is associated with "radiation damping."

* __Abraham-Lorentz formula__:
An equation giving the non-relativistic form of the self-force arising from
radiation reaction,

**F**_{self}
= −(4*U*/3*c*^{2})
d**v**/d*t*
+ (2*e*^{2}/3*c*^{2})
d** ^{2}v**/d

where *a* is the particle's radius, and *U* the electrostatic
self-energy (which blows up as *a* → 0); It is useful in describing
the motion of radiating electric charges, but it suffers from two notorious
defects, runaway solutions and preacceleration.

* __Lorentz-Dirac equation / force__:
The fully relativistic, covariant, renormalized form (in *c* = 1 units) is

*m* d*u*^{a} / d*t*
= *F*_{ext}^{a}
+ (2/3)*q*^{2}
(δ^{a}_{b}
+ *u*^{a}*u*_{b})
d^{2}*u*^{b}
/ d*t*^{2} ,

where *m* includes the "electromagnetic mass" *m*_{e}
= 4*U*/3*c*^{2}; > s.a. mass.

* __Eliezer's theorem__:
An electron moving radially according to the Lorentz-Dirac equation in the
Coulomb field of a proton will not be attracted to a collision with the proton;
Instead, it is repelled from the proton with proper acceleration increasing
asymptotically with proper time; Proponents of the Lorentz-Dirac equation
sometimes try to explain this away by speculation that the electron must
approach so closely to the proton that the field strength would be beyond
the domain of validity of the classical Lorentz-Dirac equation and therefore
require a quantum-mechanical analysis, but this explanation does not seem to hold.

* __Issue__: The presence
of d*a*^{a} / d*t*
= d^{2}*u*^{a}
/ d*t*^{2} in the equations introduces considerable
difficulties in their interpretation as equations of motion.

* __Runaway, preaccelerated
solutions__: If *F*_{ext} =
0, a solution is **v** = **v**_{0}
+ **v**_{1} exp{*t*/*τ*}, where
*τ*:= 2*e*^{2}/3*mc*^{2};
The response is that *F*_{self} applies
only when *F*_{ext} ≠ 0 and the energy
loss is small; Confirmed by QED.

* __In other dimensions__:
(Gal'tsov) Radiation reaction allows a consistent mass renormalization
only in 4D; In odd dimensions Huygens's principle does not hold and
the radiation reaction force depends on the whole past history of the
charge (radiative tail), with a divergence in the tail integral that
can be removed by mass renormalization only in 2+1 dimensions; In even
*D* > 4, divergences cannot be removed by the mass renormalization

@ __Books, simple introductions__: in Panofsky & Phillips 62;
in Rohrlich 65; Harte in(15)-a1405 [pedagogical introduction];
Haque EJP(14) [simple derivation].

@ __General references__: Dirac PRS(38);
Aichelburg & Beig AP(76);
Havas ln(76); Teitelboim et al RNC(80);
Higuchi qp/98 [in quantum mechanics];
Rohrlich PRD(99) [classical finite-size particles],
AJP(00)dec [clarification],
comment Parrott gq/05;
Harpaz & Soker IJTP(00)gq/99;
Kunze & Rendall CQG(01)gq [electromagnetism and gravity, models];
Kozameh et al GRG(09)-a0803 [stabilized by gravitational forces];
Gralla et al PRD(09)-a0905 [rigorous derivation];
Poisson a0909-ln [methods, rev];
Griffiths et al AJP(10)apr [Abraham-Lorentz vs Landau-Lifshitz formula];
Fleming et al JPA(12)-a1106 [consistent expansion in 1/*c*, without runaways];
Polonyi AP(14) [effective dynamics];
Bender & Gianfreda JPA(15)-a1409 [PT-symmetric interpretation];
Wardell ch(15)-a1501 [approaches];
Hnizdo & Vaman RPMP-a2009 [finite and divergent parts].

@ __Radiation reaction__: Milonni PLA(81) [necessary for electron];
Gupta & Padmanabhan PRD(98)phy/97;
Yaremko JPS(04)#3-a0907;
Galley et al PRL(10)-a1005,
comment Kazinski a1103,
Galley et al PRL(12)-a1206 [finite-size correction to the Abraham-Lorentz-Dirac force];
Gal'tsov in(11)-a1012 [and energy-momentum conservation];
Yaremko & Tretyak a1207 [in classical field theory];
Yaremko JPS-a1207 [in 2+1 electrodynamics];
O'Connell CP(12) [rev];
Ilderton & Torgrimsson PLB(13)-a1301 [from QED];
Hammond FP(13) [from a scalar field];
Cabo Montes de Oca & Castiñeiras a1304;
Birnholtz & Hadar PRD(14)-a1311,
Birnholtz et al IJMPA(14)-a1402 [effective field theory approach];
Burton & Noble CP(14) [in strong fields];
Faci & Novello a1611,
Faci et al a1706-proc [model with time delay];
Lynch et al a1903
[thermalized at the Fulling-Davies-Unruh temperature].

@ __Preacceleration__: Valentini PRL(88);
Barut PLA(90) [no];
Vlasov ht/97;
Villarroel PRA(97) [1D, no];
Heras AJP(06)nov [no],
comment Jackson AJP(07)sep + Hnizdo + reply;
Jiménez et al FP(06) [model].

@ __Lorentz-Dirac equation__: Vlasov ht/97 [instability];
Sonego JMP(99) [conformal behavior];
Poisson gq/99 [intro];
Chicone et al PLA(01)gq [delay equations and bifurcations];
Rohrlich PLA(01) [criticism],
PLA(02) [quasi-point charges];
Yaremko JPA(02);
Hussein et al MPLA(02) [causal integration];
O'Connell PLA(03)qp;
Higuchi & Martin PRD(04)qp [from QED];
Aguirregabiria et al PRD(06) [modified, less restrictive assumptions];
Oliver a1306 [conceptual shift];
Deguchi et al AP-a1501 [relativistic Lagrangians];
> s.a. energy-momentum tensor [for relativistic particles].

@ __In curved spacetime__: Haas a1112 [geodesics in Schwarzschild spacetime];
Kuchar et al CQG(13)-a1307 [static charge in Schwarzschild-de Sitter spacetime];
Bini et al PRD(16)-a1610 [scalar charge orbiting a Reissner-Nordström black hole];
Chu et al a1910 [tail-induced effects].

@ __In arbitrary dimensions__: Gal'tsov PRD(02),
Kazinski et al PRD(02) [regularizing point-particle self-fields];
Harte et al a1708,
PRD(18)-a1804 [from first principles].

@ __Related topics__: Parrott FP(93)
[unphysical solutions, s.a. Comay FP(93)],
mp/05 [Eliezer's theorem];
de Souza BJP(98)ht/95 [and spacetime structure];
Yaremko JMP(11) [and energy-momentum balance];
Camelio et al Chaos(12)-a1111 [and model of helium atom];
> s.a. inertia.

**In Quantum Electrodynamics**
> s.a. Liénard-Wiechert Potential; optics
[optical geometry]; QED; quantum field theory [radiative corrections].

@ __General references__: in Eyges 72;
in Jackson 75;
Vlasov phy/98;
Gill et al FP(01)phy/04 [proper time approach];
Martin PhD(07)-a0805 [classical and quantum];
Barceló et al a2005 [overview, paradoxical issues].

@ __Radiation damping__:
Aichelburg & Beig PRD(77) [model, and cosmological expansion];
Kunze & Rendall CQG(01) [models, and gravity].

@ __Examples__:
Vlasov ht/97-conf [1D extended particle],
phy/97 [rigid charged body],
phy/98 [rotating charged sphere];
Unruh PRA(99) [accelerated dipole];
Higuchi & Martin FP(05)qp [linear acceleration];
Johnson & Hu FP(05)gq-conf [uniform *a* in quantum scalar field];
Medina JPA(06)phy/05 [quasi-rigid charged body];
Rowland EJP(07)
[uniformly accelerated charge, and electromagnetic field stress-energy-momentum];
Yaremko JPA(07)-a0907,
JMP(07)-a0907 [3D].

@ __Electrodynamics__:
Ford & O'Connell PLA(91),
PLA(93);
Templin AJP(98)may [approximate];
Harpaz & Soker IJTP(00)gq/99;
Burko PRE(02)phy [near dielectric];
Higuchi PRD(02)qp;
Harte PRD(06) [extended bodies in flat spacetime];
Eriksen & Grøn PS(07) [preradiation].

@ __In curved spacetime__: Molina & Poisson gq/05;
Galley et al PRD(06) [quantum field theory, and gravitational];
Sonego & Abramowicz JMP(06)gq/05 [conformally static, optical geometry].

**Other Fields and Topics** > s.a. energy [self-energy];
gravitational radiation reaction; origin of quantum mechanics.

@ __Acoustics__: Templin AJP(99)may [and runaway solutions].

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 10 mar 2021