In General > s.a. astronomical objects [magnetars]; interstellar matter [nebulae].
* History: The first one, 3C273, was observed in 1967 (1.337 sec); 1974, discovery of the first binary pulsar; 1990, About 500 known; 2008, About 1800 known; 2012, In less than two years Einstein@Home users have found 27 new pulsars; 2015, We now know about 2500 radio pulsars, of which almost 200 are millisecond pulsars.
* Idea: Fast rotating neutron stars, in which a magnetic field channels their radiation into a beam, producing a "lighthouse effect" that is observed as pulsed radiation.
@ General references: ter Haar PRP(72); Shaham SA(87)feb; Lorimer PW(96); issue Nat(04)apr; Cordes et al NAR(04)ap/05 [and SKA results]; Kadomsev & Nomerotsky 09; Liang & Liang a1008 [electrodynamics]; Ransom IAU(12)-a1211 [rev]; Penny EPJH(13)-a1302 [discovery, SETI episode]; Knispel et al ApJ(13)-a1302 [Einstein@Home discovery of 24 pulsars]; Belvedere et al ApJ(15)-a1411 [magnetic field]; Hazard et al IAU(14)-a1412 [history]; Contopoulos MNRAS(16)-a1606 [two types?].
@ Equation of state: Friedman, Ipser & Parker PRL(89); Shapiro et al Nat(89)aug, Haensel & Zdunik Nat(89)aug [msec pulsar]; Lattimer & Schutz ApJ(05)ap/04 [double pulsar and moment of inertia].
@ Glitches: Andersson et al PRL(12)-a1207 [challenges to our understanding]; Ho et al SciAd(15)oct [and mass measurement].
@ Observational aspects: Kerr MNRAS-a1510 [modulation of pulsar signals and neutron star precession].
@ Related topics: news pw(10)jan [anomalous dispersion of pulses in interstellar matter]; Otte et al JPCS(12)-1208 [gamma rays above 100 GeV]; Brook et al ApJL(14)-a1311 [encounter with an asteroid or infalling debris from a disk]; > s.a. gravitational radiation, background and sources.

Special Types
* msec pulsars: The 0.5 ms pulsar thought to have been observed as a remnant of SN 1987A turned out not to be there [@ news Sci(90)feb; Nat(91)feb]; 2009, Fermi-LAT has detected 9 ms pulsars; 2015, 130 have been observed thus far in globular clusters; > s.a. Wikipedia page.
* Binary pulsars: The system discovered by Taylor & Hulse led to the first confirmation of energy loss by gravitational-wave emission; New system discovered in 2003, J0737–3039, has 2 pulsars, a shorter orbital period and orbital diameter 700,000 km, and a periastron advance of 17º/yr, the largest observed, and provides the best test so far of general relativity predictions [@ news S&T(05)mar].
@ msec pulsars: Backer et al Nat(82)dec; Backer & Kulkarni PT(90)mar; Rech(91)jul/aug; Lorimer LRR(01)–LRR(05)–LRR(08); Kízíltan & Thorsett AIP(10)-a0905 [and low-mass X-ray binaries]; Venter et al eConf-a0912 [emission geometry]; news nsbp(12)jun [new pulsars detected using the Fermi LAT]; Crawford et al ApJ(12)-a1208 [four new discoveries]; Lorimer IAU(12)-a1210 [galactic population]; Pletsch et al Sci(12)oct-a1211 [from gamma-ray pulsations]; Ransom et al Nat(14)jan-a1401 [in a triple system]; Pallanca PhD(14)-a1405 [optical companions]; Kondratiev et al A&A(16)-a1508 [LOFAR].
@ Binary pulsars: (and tests of general relativity) Kleppner PT(93)apr; Taylor RMP(94) [Nobel lecture]; Freire et al MNRAS(01)ap/00 [orbit]; van Straten et al Nat(01)jul-ap; Stairs LRR(03) [timing]; Kramer et al eConf-ap/05, news pw(06)sep; Kramer et al CQG(09) [rev]; Iorio in(10)-a1004 [and fundamental physics]; Knispel et al ApJL(11)-a1102 [discovery with the Einstein@Home distributed computing project]; news at(13)oct [and indirect detection of gravitational-wave background from supermassive black-hole pairs]; Damour CQG(15)-a1411 [discovery of the first binary pulsar]; Del Pozzo & Vecchio MNRAS(16)-a1606.
@ Super-Eddington: news tt(14)oct [pulsar that seems to violate the Eddington limit]; news pt(16)nov.
@ X-ray pulsars: Caballero & Wilms MSAI-a1206-conf [rev].
@ Related topics, observation: Chennamangalam & Lorimer MNRAS(14)-a1311 [near the galactic center]; news wired(14)nov [missing near the galactic center]; Hessels et al PoS-a1501 [in globular clusters]; Clark et al ApJL(15) + news AAS(15)aug [discovery through Einstein@Home project].

Applications > s.a. higher-dimensional gravity; scalar-tensor gravity [tests].
* Tests of gravity: Aspects of gravity that can be tested include tests of the weak and strong equivalence principles, gravitational dipole radiation, extra field components of gravitation, gravitomagnetism, and spacetime symmetries; 2015, the SKA's sensitivity will vastly improve the timing precision of millisecond pulsars.
* Pulsar timing arrays: Metric perturbations caused by gravitational waves around the Earth cause variations in the arrival times of pulsar signals, so it has been proposed that simultaneous timing measurements of multiple pulsars can be used to detect gravitational waves.
@ Tests of gravity: Lyne & Kramer pw(05)mar, news Nat(06)sep; Kramer IAU(13)-a1211, IJMPD(14)-MG13; De Laurentis & De Martino IJGMP(15)-a1310 [testing f(R) gravity with PSR J0348+0432]; Wex a1402-fs [rev]; Shao et al PoS-a1501 [with the SKA]; Manchester IJMPD(15)-a1502-in; Kramer IJMPD-a1606-MG14 [rev]; > s.a. tests of the equivalence principle; tests of general relativity with orbits; tests of lorentz symmetry.
@ Pulsar timing arrays: issue CQG(13)#22; Cornish & van Haasteren a1406, Ravi et al MNRAS(15)-a1406 [and gravitational-wave detection]; > s.a. gravitational-wave detection and propagation; gravitational waves from compact binaries; Wikipedia page.
@ And spacecraft navigation systems: Dong a0812; Bernhardt et al IEEE(11)-a1111-proc; Deng et al ASR(13)-a1307.
@ Related topics: Ruggiero et al IJMPD(11)-a1011 [as Earth positioning system]; Chennamangalam et al NA(15)-a1311 [modulation of pulsar signals by extraterrestrial civilizations];

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 14 nov 2016