|  Tests of General Relativity – Redshift and Signal Retardation | 
Gravitational Redshift / Time Dilation
  > s.a. doppler effect [redshift]; Gravity Probe A.
  * Idea: A photon's energy/frequency
    decreases as it climbs out of a gravitational potential well.
  * Calculation: One can calculate it as the
    amount of proper time elapsed at a point x2 per
    unit proper time at x1, which is closely related
    to mass in 4D; In a static spacetime, where we know how to relate t at different
    points, it is \(z = [g^{~}_{00}(x^{~}_2)/g^{~}_{00}(x^{~}_1)]^{1/2} - 1\); Without a preferred
    time foliation it is more arbitrary, but the condition \(g^{~}_{00} = 0\) still defines the
    infinite-redshift set.
  * History and tests: 1907, Predicted by Einstein
    using just the equivalence principle; 1959, Demonstrated experimentally by R Pound and G Rebka
    in a tower at Harvard University using the Mössbauer effect, to within 1% (> Wikipedia
    page);
    1967, Test carried out with the atomic clock aboard Gravity Probe A during a 2-hour mission;
    The effect has to be taken into account by the GPS; 2010, Controversy over whether atom
    interferometry can be used to detect gravitational redshift
    [@ news iop(11)jun];
    2015, (Atom interferometry controversy not settled) Two Galileo satellites accidentally launched
    into wrong, elliptical orbits will be used to measure gravitational redshift with higher precision
    (below 0.004%); ESA's Atomic Clock Ensemble in Space (ACES) is scheduled to fly in 2017 on the ISS;
    2018, Results from Galileo satellites improve on previous bounds.
  * Plan: Put a stable clock around the Sun, to give
    \(\sigma(\beta) = 10^{-6}\), \(\sigma(\gamma) = 10^{-7}\).
  @ General references:
    Pound & Rebka PRL(60);
    Vessot & Levine GRG(79);
    Vessot et al PRL(80);
    Okun et al AJP(00)feb [pedagogical];
    Okun MPLA(00),
    MPLA(00)hp [thought experiment];
    Malec CQG(02)gq/01 [exact treatment in Schwarzschild spacetime];
    Teyssandier et al ASS(07)-a0711-in [using Synge's world function];
    Hohensee et al JPCS(11)-a1009;
    Li CQG(14) [interpretation as Doppler shift];
    Brown & Read AJP(16)feb-a1512 [misconceptions];
    Li et al a1802 [underlying mechanism];
    news sn(18)jul [observation, star near galacic center];
    Herrmann et al PRL(18)-a1812
    + news sn(18)dec [observation by Galileo satellites];
    Okolow EJP(20)-a1906 [pedagogical introduction and examples];
    news pt(20)may [best transportable clocks].
  @ In the Solar System: Briatore & Leschiutta NCB(77) [on Earth];
    Kopeikin et al PLA(07)gq/06 [Cassini and radio waves near the Sun];
    Wolf & Blanchet CQG(16)-a1509 [in the field of the Sun and the Moon];
    Uggerhøj et al EJP(16)-a1604 [the center of the Earth is younger than the surface];
    Litvinov et al PLA(18)-a1710 [with an Earth-orbiting satellite];
    Nunes et al ASR(19)-a1904 [up to 350,000 km from Earth];
    González Hernández et al a2009 [around the Sun]. 
  @ Other situations:
    Desloge AJP(90)sep [in a uniform field];
    Manly & Page PRD(01) [light dispersion in the lab];
    DeDeo & Psaltis PRL(03)ap [atomic lines from neutron stars];
    Müller AN(07)ap/06 [from disk around black hole];
    Wojtak et al Nat(11)sep-a1109 [galaxies in custers];
    Delva et al CQG(15)-a1508 [with stable clocks in eccentric orbits];
    Burns et al AJP(17)oct [undergraduate research project];
    Dai et al ApJ-a1812 [main-sequence stars and red giants];
    Nucamendi et al a2012 [NGC 4258 nucleus].
  @ In other theories: Florides a1310 [vs general relativity];
    Arms & Serna a1610-conf [special-relativity analog];
    Buoninfante et al EPJC(20)-a1907.
  @ And matter interferometry:
    Müller et al Nat(10)feb
    + a1008-conf,
    criticism Wolf et al Nat(10)sep-a1009
    + CQG(11)-a1012
    + a1106-proc [test];
    Chou et al Sci(10)sep
    + news pw(10)sep [meter-scale observations];
    Hohensee et al JPCS(11)-a1009 [tests];
    Sinha & Samuel CQG(11)-a1102;
    Hohensee et al PRL(11)-a1102;
    Unnikrishnan & Gillies a1106;
    Hohensee et al CQG(11)-a1112;
    Wolf et al CQG(12)-a1201;
    Ufrecht et al a2001 [and universality of free fall];
    Roura PRX(20) [quantum clock interferometry];
    Di Pumpo et al a2104.
   Related topics: see gravitational phenomenology;
    light bending.
 Related topics: see gravitational phenomenology;
    light bending.
Signal Retardation (Shapiro time delay)
  > s.a. gamma-ray astronomy; neutron
  stars; photon phenomenology [light travel time].
  * Idea: The light travel time
    between planets is longer than the corresponding flat spacetime value.
  * Remark: It is always a
    delay, not an advance, as follows from the energy conditions
    [@ Visser et al NPPS(00)gq/98].
  * Results: Measurements of the
    time delay lead to estimates of the PPN parameter γ, and so
    far (2020) are consistent with γ = 1; Planetary echoes (with
    Mercury) had an uncertainty of 0.02 in γ, the Viking landers
    relativity experiment 0.002, Jupiter and quasar signals \(2\times10^{-4}\);
    2003, 1.5 order of magnitude improvement  with Cassini, to \(2\times10^{-5}\);
    A gravitational wave detector approach has been proposed, but it will be less precise.
  @ General references: Shapiro PRL(64);
    Reasenberg et al ApJL(79);
    Richter & Matzner PRD(83);
    in Wald 84, 146-148;
    Bruckman & Esteban AJP(93)aug;
    Teyssandier et al ASS(07)-a0711-in [using Synge's world function];
    Ashby & Bertotti CQG(10)-a0912 [accurate higher-order terms].
  @ In binary systems: Laguna & Wolszczan ApJ(97)ap [pulsar-black hole];
    van Straten et al Nat(01)jul [pulsar-black hole];
    Tartaglia et al PRD(05)gq.
  @ Related topics: Kopeikin ApJL(01)gq [quasars, extra term from speed of gravity];
    Iorio NCB(03)gq/02 [in Kerr spacetime];
    Ciufolini et al PLA(03)gq/02 [rotating masses];
    Ruggiero & Tartaglia PRD(05)gq [binary pulsars, gravitomagnetic corrections];
    Bertotti et al CQG(08)-a0709,
    comment Kopeikin PLA(09)-a0901 [effect of Sun's motion];
    Kutschera & Zajiczek APPB-a0906 [for relativistic particles];
    Ballmer et al CQG(10)-a0905 [on Advanced LIGO laboratory distance scales];
    Boudjemaa et al GRG(11)-a1006 [in the Einstein-Straus solution];
    Ashby & Bender a1106-conf [proposed space mission];
    Jia & Liu PRD(19)-a1906 [in gravitational lensing of Schwarzschild spacetime].
  @ Measurements: Bertotti et al Nat(03)sep
    + pw(03)sep [Cassini];
    Sullivan et al a2005
      [using next-generation gravitational wave detectors].
  @ In other theories: Asada PLB(08)-a0710;
    Schucker & Zaimen A&A(08)-a0801 [effect of cosmological constant];
    Bailey PRD(09)-a0906 [Lorentz-violating SME];
    Magueijo & Mozaffari CQG(13)-a1212
      [infrared modifications and time delays across saddles];
    > s.a. brans-dicke theory;
      Non-Symmetric Gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 may 2021