|  Gravitational Entropy | 
In General
  > s.a. decoherence; lanczos potential;
  particle effects; spacetime foam.
  * Goals: (i) Give a thermodynamical
    meaning to particle creation in gravitational fields; (ii) Generalize the second law
    to cosmology; (iii) Define an entropy for the gravitational field (Penrose: square of
    the Weyl tensor).
  * Hints: One can define an entropy in
    ways that seem to be related to a gravitational arrow of time, e.g., one related to
    particle production, by using the Weyl tensor, or one related to inhomogeneity and clustering.
  @ General references: Tolman PR(30);
    Davies 74, in(81);
    Davies et al PRD(86);
    Marolf et al PRD(04)ht/03 [observer dependence];
    Fatibene et al IJGMP(09) [from Holst Lagrangian];
    Smoot IJMPD(10)-a1003 [entropy flow and holography];
    Clifton et al CQG(13)-a1303 [based on the Bel-Robinson tensor];
    Lewkowycz & Maldacena JHEP(13)-a1304 [generalized, for euclidean solutions];
    Ruchin et al EPJC(17)-a1312 [Perelman's W-entropy];
    Fursaev a1406;
    Kothawala & Padmanabhan PLB(15)-a1408 [and emergent gravity, zero-point length];
    Camps & Kelly JHEP(15)-a1412 [without replica symmetry];
    Chen et al a1506 [thermofield dynamics approach].
  @ Weyl tensor: Penrose in(79);
    Smolin GRG(85) [matter to gravitational radiation];
    Husain PRD(88);
    Pelavas & Lake PRD(00)gq/98 [self-similar spacetimes];
    Grøn & Hervik gq/02;
    Amarzguioui & Grøn PRD(05)gq/04 [collapsing matter];
    Rudjord et al PS(08) [and black holes];
    Belgiorno & Catino CQG(20)-a2005 [candidate Weyl entropy density];
    > s.a. Lemaître-Tolman-Bondi Solutions;
      Weyl Curvature Hypothesis.
  @ And gravitational action: Banerjee & Majhi PRD(10)-a1003;
    Astaneh et al a1411,
    Dong & Miao JHEP(15)-a1510 [and total derivative terms];
    Tuveri et al a1604.
  @ Phase space approach:
    Rothman & Anninos PLA(97),
    PRD(97)gq/96;
    Rothman GRG(00)gq/99.
  @ Noether approach: Fatibene et al AP(00)gq/99 [and Taub-Bolt];
    Garfinkle & Mann CQG(00)gq [and Taub-Bolt].
  @ Upper bound: Bousso JHEP(99)ht [conjecture];
    Flanagan et al PRD(00)ht/99;
    Low CQG(02)gq/01;
    Frampton & Kephart JCAP(08)-a0711 [and dark matter];
    Hsu & Reeb MPLA(09)-a0908 [monsters].
  @ Spacetime regions or subsets: Mäkelä & Peltola gq/04 [spacelike 2-surfaces];
    Pabmanabhan IJMPD(12) [and distortion of null surfaces in spacetime];
    Baccetti & Visser CQG(14)-a1303 [for arbitrary bifurcate null surfaces];
    Balasubramanian et al JHEP(13)-a1305 [entropy of a hole in spacetime];
    Pesci Ent(15)-a1404 [matter entropy flux across horizons].
  @ Covariant, geometrical meaning: Hawking & Hunter PRD(99)ht/98;
    Lowe JHEP(99)ht;
    Mäkelä gq/05 [arbitrary spacelike 2-surface].
Specific Types of Manifolds / Metrics > s.a. black-hole entropy
  and thermodynamics; de sitter space;
  LTB Solutions.
  @ Cosmology: Frautschi Sci(82)aug;
    Gibbons NPB(87),
    NPB(88);
    Prigogine IJTP(89);
    Prigogine et al GRG(89);
    Brandenberger et al PRD(93) [density perturbations in inflation];
    Barrow NA(99)ap;
    Grøn & Hervik CQG(01)gq/00 [Bianchi I];
    Obregón et al PRD(03)ht [from Cardy-Verlinde formula];
    Pelavas & Coley IJTP(06)gq/04 [Szekeres & Bianchi VIh];
    Nielsen & Ninomiya IJMPA(06)ht [and periodic universe];
    Hernández & Quevedo GRG(07)gq [Bianchi I and V, and Cardy-Verlinde construction];
    Frampton et al CQG(09)-a0801;
    Pavón et al a1212-MG13 [the generalized second law in inflationary cosmology];
    Sussman AN(14)-a1408 [and cosmic expansion];
    Sussman & Larena CQG(15)-a1503 [local cosmic voids];
    Kiessling a1905-in;
    Saha IJMPA-a1910 [Viaggiu entropy];
    Chakraborty et al a1912 [models];
    > s.a. cosmological acceleration.
  @ Collapsing spacetimes: Maiella & Stornaiolo IJMPA(10)-a1007 [spherical symmetric, Cardy-Verlinde formula];
    > s.a. gravitational collapse.
  @ Topology: Liberati & Pollifrone NPPS(97)ht/95 [manifolds with boundary, mathematical].
  @ Boundaries / horizons: Carlip CQG(99)gq;
    Brustein PRL(01)ht/00 [causal horizon in FLRW models];
    Mäkelä & Peltola gq/02 [Rindler];
    Padmanabhan CQG(02)gq,
    GRG(02)gq [spherical symmetry],
    CQG(04)gq/03 [and density of states];
    Chatterjee & Majumdar Pra(04)gq-conf;
    Lemos & Zaslavskii PRD(10)-a0904 [quasiblack holes];
    Romero et al IJTP(12)-a1109 [black holes and wormholes];
    > s.a. horizons.
  @ Singularities: Anastopoulos & Savvidou CQG(12)-a1103.
  @ In other theories of gravity: Camps JHEP(14)-a1310
      [curvature-squared theories, extension of the Ryu-Takayanagi prescription];
    > s.a. Gauss-Bonnet Gravity.
And Quantum Theory
  > s.a. quantum gravity phenomenology [limitations to spacetime measurements].
  @ Entanglement entropy:
    Fursaev PRD(08);
    Jacobson a1204-GRF [finiteness];
    Cooperman & Luty JHEP(14)-a1302 [renormalization, and effective action];
    Gyongyosi a1403
      [quantum gravity and smooth entanglement entropy transfer];
    Bhattacharyya & Sharma JHEP(14)-a1405 [higher-derivative gravity];
    Nomura & Weinberg JHEP(14)-a1406 [semiclassical spacetime];
    Kastor et al a1604 [Lovelock gravity, extended first law].
  @ Particle creation: Hu PLA(83),
    & Kandrup PRD(87);
    Kandrup IJTP(88);
    Prigogine et al PNAS(88);
    Nesteruk pr(91);
    Rau in(95)ht/94.
  @ Loop quantum gravity: Krasnov PRD(97)gq/96 [boundaries];
    Livine & Terno NPB(08)-a0706 [bulk entropy and holographic regime].
  @ Quantum gravity:
    Kandrup CQG(88) [second law and quantum cosmology];
    Garattini PLB(99)ht [spacetime foam];
    Balasubramanian et al JHEP(07)-a0705 [AdS-cft and half-BPS universes];
    Kothawala et al PRD(08)-a0807 [quantization, various gravity theories];
> s.a. entropy in quantum theory.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 sep 2020