Electronic Technology |
In General > s.a. technology.
* Spintronics: Short for
spin electronics, the study of electron spin in materials, with the hope
of developing an new microelectronic devices; Based on the belief that
up and down spin states can be exploited to build smaller (potentially on
atomic scale) binary devices that use less power than charge-current-based
devices, which furthermore may also be in intermediate quantum states,
which holds the potential for highly parallel quantum computation.
@ Texts: Fischer-Cripps 05 [electronics, II];
Horowitz & Hill 15 [electronics, III];
Ghosh 16 [nanomaterials, devices].
@ Spintronics: Das Sarma AS(01);
Grundler pw(02)apr;
Zutic et al RMP(04);
Bland et al pw(08)jan;
Awschalom & Samarth Phy(09) [without magnetism];
Awschalom video Phy(10);
Bauer & Tserkovnyak Phy(11)may
[using spin pumping to convert magnons into electron spin flips];
news pw(15)may,
Kukreja et al PRL(15)
+ news R&D(15)sep [spin currents traveling across materials].
@ Spinonics: Baskaran & Jafari PRL(02)
+ pn(02)jul [no charge].
@ Atomtronics: news nat(14)feb [the emerging field];
Amico & Boshier a1511-JO [overview and roadmap];
Pepino Ent-a2104 [rev, and recent progress].
@ Molecular, carbon based: Tans et al Nat(98)may;
Heath & Ratner PT(03)may;
> s.a. elements [C nanotubes].
@ Organic electronic devices: Sheats et al Sci(96)aug [electroluminescence].
@ Quantum phenomena: Chen et al IJTP(07) [in mesoscopic circuits];
> s.a. quantum technology.
@ Related topics: Valasek TPT(63) [piezoelectricity];
& Heath (UCLA), Williams & Kuekes (HP) [chemically grown nanocomputers];
Auciello et al PT(98)jul [ferroelectrics and data storage];
Leonhardt & Philbin NJP(06)cm [electrical engineering metamaterials and general relativity];
Kharzeev & Yee PRB(12)-a1207 [chiral electronic devices];
> s.a. special relativity [batteries].
Currents and Resistors
> s.a. electricity [conductivity, thermoelectric effect and devices].
* Memristor: A device that
"remembers" the last current it experienced and varies its resistance
accordingly.
@ Resistors:
Romano & Price AJP(96)sep [conical];
Wu JPA(04)mp [2-point resistance and network Laplacian];
news wired(11)dec [onset of resistance].
@ Negative resistance: Lesurf NS(90)mar31, 56-60;
Zudov et al PRL(06)
+ pn(06)jun;
+ Kaya & Eberl PRL(07)
+ pw(07)may [in 2D electron gases].
@ Memristors: news pw(08)apr,
news ns(11)mar;
Vongehr ASL(12)-a1205.
@ Related topics: Wagner & Sols PRL(99) [current from electrons deep beneath the Fermi surface];
news pw(06)jun [bi-directional single-electron ammeter];
news pn(08)may [piezoresistance].
MicroElectroMechanical Systems (MEMS) etc > s.a. casimir effect.
* Idea: Small
(microns to mm) electrically-driven mechanical devices.
* Techniques: Surface
micromachining (thin films are deposited on a silicon surface and some
of the features are etched away to result in movable parts), bulk
micromachining (features are carved out of a silicon surface).
* Examples: Sensors (p,
a, gyros, imaging, flow), micromotors (inkjet printer jets,
valves), mirrors, etc; 1999, Dick Tracy watches by 2005?
* Molecular robots:
1999, T R Kelly built a 78-atom motor [@ Kelly et al
Nat(99)sep].
@ References: NS(96)jun29;
Blencowe CP(05) [NEMS, nanoelectromechanical systems];
Schwab & Roukes PT(05)jul [quantum limits].
Superconducting and Magnetic Technology > s.a. superconductivity.
* SQUID: A Superconducting
Quantum Interference Device for very sensitive measurements of magnetic flux
which uses flux quantization and the Josephson Effect, built from 1 (dc SQUID,
1964) or 2 (rf SQUID, 1970) Josephson junctions, operating at a few Kelvins;
SQUIDs can measure fields of femtotesla (10–15 T)
and monitor the magnetic fields produced by brain activity.
@ SQUIDs: Clarke SA(94)aug.
@ Magnetic technology: Geim PT(98)sep [research magnets].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 27 apr 2021