Higher-Order Theories of Gravity |
In General
> s.a. gravity theories; phenomenology [and solutions,
weak-field limit]; types of higher-order gravity theories [including actions, Hamiltonians].
* Idea: Theories of gravitation,
first discussed by H Weyl in 1918 as alternatives to Einstein's theory,
that include quadratic or higher-order curvature terms in the action, e.g.,
R2, Rab
Rab and Rabcd
Rabcd (only
two of these are independent – the integral of a combination
of them gives the Euler number χ(M)).
* Motivation: One
can alleviate the divergences in the quantum theory, and modify
the predicted cosmological expansion history.
* Action / Lagrangian:
In 4D, the most general one with up to quadratic terms is
S = − ∫ (α Rab Rab − β R2 + γ R) dv ;
any other term can be absorbed into these using the Gauss-Bonnet theorem
[true only in positive-definite case?]; The only one which gives second-order
equations in d > 4 is the Lanczos Lagrangian; But S
could have a different curvature dependence.
* Field equations:
[@ Stelle PRD(77)]
Hab:= (α − 2β) R;ab− α Rab;c;c − (\(1\over2\)α − 2β) gab \(\square\) R + 2α Rmn Rambn +
− 2β R Rab − \(1\over2\)gab (α Rmn Rmn − βR2) + γ Rab − \(1\over2\)γ gab R = −\(1\over2\)Tab ,
where Hab satisfies
H ab;b
= 0 identically, as a consequence of the field equations.
@ Reviews:
in Fradkin & Tseytlin PRP(85);
Cotsakis gq/97-MG8 [status];
Nojiri & Odintsov IJGMP(07)ht/06-ln [and dark energy];
Farhoudi GRG(06) [and trace anomaly relation];
Capozziello & Francaviglia GRG(08)-a0706 [and phenomenology];
Schmidt IJGMP(07)gq/06-ln [4th-order, history and applications];
Sotiriou PhD(07)-a0710;
Sotiriou & Faraoni RMP(10)-a0805;
Fabbri PhD-a0806;
Faraoni a0810-conf [successes and challenges];
Capozziello et al OAJ(10)-a0909;
De Felice & Tsujikawa LRR(10)-a1002;
Bueno et al PRD(17)-a1610 [linearization].
@ With matter: Páramos a1111-proc [on non-minimal couplings to curvature];
Feng & Lü EPJC(16)-a1512 [non-minimally coupled Maxwell field].
@ Approaches, general references:
Stelle GRG(78);
Brans CQG(88) [and metric redefinitions];
Essén IJTP(90);
Cuzinatto et al EPJC(15)gq/06 [gauge formulation];
Jaime PRD(11)-a1006 [f(R) gravity with R as extra degree of freedom];
Hamad IJMPD(14)-a1408 [entropy-functional formalism];
Belenchia et al RPP(18)-a1612 [degrees of freedom];
Deser GRG(17)-a1705 [bootstrapping from linear theories].
Metric vs Palatini Formulation
* Idea: In general relativity,
the metric (second-order) and the Palatini (first-order) formulations are dynamically
equivalent, at least classically; This equivalence does not hold for theories of gravity
with a non-linear dependence on the curvature, and the set of solutions of the Palatini
equations is a non-trivial subset of the solutions of the metric equations; One set of
exceptions are the Lovelock gravity theories.
* Hybrid theories: Theories in which
an f(R) term constructed à la Palatini is added to the metric
Einstein-Hilbert Lagrangian.
@ General references:
Olmo & Komp gq/04;
Deser CQG(06)gq,
comment Kiriushcheva & Kuzmin CQG(07)gq/06 [obstacles with odd-derivative terms];
Sotiriou PLB(07) [instability in metric formulation];
Exirifard & Sheikh-Jabbari PLB(08)-a0705 [equivalence of formulations only for Lovelock gravity];
Popławski IJMPA(08)-a0706;
Iglesias et al PRD(07)-a0708 [how (not) to Palatini];
Borunda et al JCAP(08)-a0804;
Faraoni PLB(08)-a0806 [Palatini is unphysical];
Bastero-Gil et al AIP(09)-a0901;
Capozziello et al MPLA(11)-a1006 [equivalence by divergence-free current];
Vitagliano et al PRD(10)-a1007 [f(R) vs other forms of the action];
Capozziello et al MPLA(10)-a1009 [and Jordan frame vs Einstein frame].
@ Hybrid theories: Capozziello et al JCAP(13)-a1212,
IJMPD(13)-a1305-GRF;
Tamanini & Böhmer PRD(13);
Böhmer et al PRD(13)-a1305 [stability of the Einstein static Universe];
Capozziello et al Univ(15)-a1508 [rev].
@ Special types of theories: Shahid-Saless PRD(87) [R + R2 theory];
Ezawa et al gq/03,
NCB(04)gq [f(R) theories];
Amendola et al PRD(11)-a1010
[f(R) theories, unified framework with larger class of theories];
Olmo IJMPD(11)-a1101,
a1112-proc
[f(R) theories, Palatini approach].
Relationship with General Relativity and Scalar-Tensor Theories
* Relationship with scalar-tensor gravity:
If we have a theory with Lagrangian
\(\cal L\) = |g|1/2 F(g, Ric(g)) + \(\cal L\)m(g, ∂g, φ, ∇gφ) ,
a redefinition of the metric (which need no longer be Lorentzian) gives a scalar-tensor theory with action
\(\cal L\) = |h|1/2 R(h) + \(\cal L\)m + \(\cal L\)+(h, ∂h, φ,∇hφ) , where hab:= |det(δ\(\cal L\)/δRab)|−1/2 (δ\(\cal L\)/δRab) ;
A theory with an independent connection with torsion and/or non-metricity but not
coupled to matter is equivalent to ω0
= −3/2 Brans-Dicke theory.
@ And general relativity, scalar-tensor: Goenner in(87);
Magnano et al GRG(87);
Jakubiec & Kijowski PRD(88),
JMP(89);
Magnano & Sokołowski PRD(94)gq/93;
Magnano gq/95-conf;
Sokołowski gq/95-GR14;
Núñez & Solganik ht/04;
Flanagan CQG(04)gq [equivalence];
Sotiriou CQG(06)gq;
Bertolami & Páramos CQG(08)-a0805 [and non-trivial matter coupling];
Bisabr PS(09)-a0808;
Sotiriou CQG(09)-a0904 [with non-metricity and torsion, equivalence to Brans-Dicke theory];
Rodrigues et al PRD(11)-a1103 [auxiliary-field representation for modified gravity models];
Castañeda & Velásquez JPComm(20)-a1808 [and cosmological perturbations];
> s.a. f(R) theories.
Special Topics and Results
> s.a. higher-order lagrangian theories; massive gravity.
* Bicknell theorem: A
conformal relationship between 4th-order gravity and scalar-tensor theory;
> s.a. scalar-tensor gravity.
@ Energy:
Boulware et al PRL(83);
Deser & Yang CQG(89);
Borowiec et al GRG(94);
Deser & Tekin PRL(02)ht,
PRD(03)ht/02,
PRD(07)gq;
Fatibene et al IJGMP(06) [same solution, different theories];
Multamäki et al CQG(08)-a0712 [energy-momentum complexes];
Baykal PRD(12)-a1212 [quadratic theories];
> s.a. gravitational energy.
@ Noether symmetries: Sanyal et al GRG(05)ap/03;
Modak et al GRG(05);
Capozziello et al EPJC(12)-a1206 [in Hamiltonian dynamics, rev].
@ Cauchy / initial-value problem, f(R) gravity:
Teyssandier & Tourrenc JMP(83) [R + R2];
Capozziello & Vignolo IJGMP(12)-a1103;
Tsokaros CQG(14) [for f(R) gravity];
Sáez-Chillón a2103 [3+1 decomposition];
> s.a. initial-value formulation [characteristic formulation].
@ Cauchy / initial-value problem, other:
Jakubiec & Kijowski JMP(89) [well-posedness];
Lanahan-Tremblay & Faraoni CQG(07)-a0709,
comment Capozziello & Vignolo CQG(09)-a0903,
reply CQG(09)-a0906 [well-posed for metric version];
Capozziello & Vignolo IJGMP(09)-a0901,
CQG(09) [with perfect fluid];
Paschalidis et al CQG(11)-a1103 [preservation of constraints];
Cayuso et al PRD(17)-a1706;
Morales & Santillán JCAP(19)-a1811 [Stelle quadratic gravity].
@ Other related topics:
Eliezer NPB(89) [Regge calculus];
Ghoroku pr(90) [lqg-type variables];
Bartoli et al CQG(99)gq/98 [gauge fixing];
Woodard LNP(07)ap/06 [choice of theory];
Carloni & Dunsby JPA(07)gq/06-conf [dynamical systems approach];
Padmanabhan PRD(11)-a1109;
Kim et al PRL(13)-a1306
[quasilocal conserved charges];
Mistry et al EPJC(20)-a2001 [spectral action approach];
> s.a. hamilton-jacobi theory; higher-order
theories of quantum gravity; metric matching.
> Related results: see
Israel's Theorem; Lichnerowicz Theorem;
types of higher-order theories [Ostrogradski theorem].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 3 apr 2021