Non-Extensive Statistical Mechanics |
In General
> s.a. generalized thermodynamics [relativistic].
* Idea: (Tsallis) non-extensive
thermo-statistics is based on a natural generalization of entropy for systems
with long-range interactions, for which extensive thermo-statistics fails, such
as gravity and electromagnetism.
* Status: 2005, There are
growing theoretical indications of the need for this generalization for large
cosmological structures, where the observed pseudo-temperature is generally
different from the true thermodynamic one.
@ General references: Tsallis JSP(88);
Czachor & Naudts PRE(99)qp/98 [foundation];
Naudts RVMP(00)mp/99;
Tsallis PhyA(04);
Plastino PhyA(04);
Ferri et al PhyA(05);
García-Morales & Pellicer PhyA(06) [microcanonical foundation and fractal phase space];
Parvan PLA(06) [microcanonical foundation],
PLA(06) [extensive thermodynamic limit];
Campisi PLA(07) [limiting cases];
de Almeida PhyA(08)-a0708 [formal equivalence with extended Boltzmann-Gibbs statistics];
Ohara PLA(07) [geometric aspects];
Feng & Liu PhyA(09) [correlations and energy fluctuations];
Naudts 11;
Pressé et al PRL(13) [consistency issue with the Shore and Johnson axioms];
Plastino & Rocca PhyA-a1503 [two types of Tsallis probability distributions].
@ Entropy: Sakhnovich a1103 [and energy];
Anghel & Parvan a1803 [physical interpretation, mesoscopic systems];
> s.a. entropy [extensivity].
@ Non-extensive thermodynamics: Abe & Rajagopal PRL(03) [quantum, second law];
Ou & Chen PhyA(06) [energy additivity and 0th law];
Carrete et al PhyA(08) [microcanonical equations];
Scarfone PLA(10) [intensive variables];
> s.a. specific heat; temperature.
@ Generalizations:
Beck & Cohen PhyA(03),
Beck PhyA(04) [superstatistics].
@ Related topics: Carati PhyA(08) [and fractal dimension of orbits];
Liu & Du PhyA(08) [ensemble equivalence];
Takahashi PhyA(09) [free energy];
Du ChPB(10)-a0905 [and Fokker-Planck equation dynamics];
Ubriaco PLA(09) [entropies based on fractional calculus];
Boon & Lutsko PLA(10)-a1003 [and continuous Hamiltonian systems];
Babacan PLA(11) [density of states calculation];
Barreira RVMP(10)
[results in almost-additive thermodynamic formalism];
Guo & Du PhyA(12) [energy distribution and fluctuations];
Wilk & Włodarczyk PhyA(14) [Tsallis distribution with complex non-extensivity parameter q].
> Related topics: see Coarse-Graining;
entropy; statistical-mechanical states [grand canonical];
temperature.
Tsallis Non-Extensive Entropy / q-Entropy
> s.a. entropy [relative and conditional entropy].
* Idea: Applicable when microscopic
interactions and memory are long-ranged; The Tsallis definition is
Sq = k (1−∑i piq) / (q−1), with q > 1;
The Boltzmann-Gibbs expression is recovered in the q → 1 limit.
@ General references: Tsallis JSP(88);
Suyari JPA(02);
Furuichi et al JMP(04),
Furuichi JMP(06) [properties];
Sattin PS(05) [interpretation in terms of incomplete knowledge];
Piasecki PhyA(06) [quasi-additivity];
Dukkipati et al PhyA(07) [measure-theoretic aspects];
Furuichi JMP(09) [maximum-entropy principle];
Tsallis EPJA(09)-a0812 [rev];
Du BASI-a1001 [properties];
Sadeghi et al PRA(12) [in phase-space quantum mechanics];
Creaco & Kalogeropoulos JPCS(13)-a1209;
Rufeil Fiori & Plastino PhyA(13) [and Shannon entropy];
Kalogeropoulos AIP(13)-a1308 [hyperbolicity, and consequences],
EPJB(14)-a1403 [extensive limit];
Tsallis CP(14)
[introduction, and thermostatistical approach to inanimate and living matter];
Petz & Virosztek MIA(15)-a1403 [inequalities];
Kalogeropoulos a1704 [Legendre transforms];
> s.a. quantum statistical mechanics.
@ Interpretation:
Wilc & Włodarczyk PhyA(08);
Nelson & Umarov PhyA(10) [in terms of non-linear coupling of statistical states];
Jizba et al PRE(17)-a1610 [as a statistical physics of random chains].
@ Vs Rényi entropy: Jizba & Arimitsu PhyA(04)cm/03;
Masi PLA(05) [common framework];
Figueiredo et al PhyA(06) [statistical];
Campisi & Bagci PLA(07) [and Tsallis ensemble];
Campos PhyA(10) [and escort probability distribution];
> s.a. types of entropy.
@ Related topics: Oikonomou PhyA(11) [multinomial coefficients method];
Trindade & Vianna PhyA(12) [and quantum groups];
Kalogeropoulos a1206 [escort distributions];
Plastino & Rocca PhyA(13) [q-Laplace transform];
Kalogeropoulos IJGMP(14)-a1401 [almost additive, properties],
a1502-conf [and generalized Ricci curvature];
Korbel PLA(17)-a1705 [rescaling the non-additivity parameter].
@ Applications: Bhattacharyya et al PRD(16)-a1608 [example and thermodynamic calculations];
Abreu et al PLB-a1910 [in lqg];
Hameeda et al GRG-a2103 [clustering of large-scale structure];
> s.a. indefinite causal structures.
@ Generalizations: Santos et al PLA(11) [generalized quantum entropies within the Tsallis and Kaniadakis frameworks];
Weberszpil & Helayël-Neto PhyA(16)-a1511
[Tsallis and Kaniadakis frameworks, q-deformed algebras and fractional-derivative operators];
Kalogeropoulos a1905 [relative q-entropy].
Applications
> s.a. chaos; critical phenomena;
gas [ideal gas]; Immirzi Parameter,
networks [Kaniadakis statistics]; open systems;
turbulence [in astrophysics].
@ General references: Chamati et al PhyA(06) [black-body radiation];
Ochiai & Nacher PhyA(09) [for complex networks];
Saguia & Sarandy PLA(10) [in disordered quantum spin-S chains];
Lukes-Gerakopoulos et al PhyA(08),
Kalogeropoulos QSC(12)-a1104 [and weak chaos];
Kalogeropoulos QSC(13)-a1203 [and systems with vanishing largest Lyapunov exponent].
@ In gravity and cosmology: Du ASS(06)nl/04 [self-gravitating systems];
Mavromatos & Sarkar PRD(09)-a0812 [stringy spacetime foam models];
Frigerio et al MNRAS(15)-a1409 [on galactic scales, rotation curves];
Kalogeropoulos a1601-proc;
Majhi a1703 [black-hole entropy],
PLB(18)-a1806 [FLRW cosmology].
@ In particle physics:
Beck PhyA(00) [particle spectra],
PhyA(02) [turbulence, and cosmology],
PhyA(04) [cosmic rays];
Kohyama & Niegawa PTP(06)ht [quantum field theory, quarks and gluons].
@ Other applications:
Sattin JPA(03) [granular gas];
Chakrabarti et al PhyA(08) [diatomic molecule, specific heat];
Saguia & Sarandy PLA(10)-a0912 [disordered antiferromagnetic quantum spin chains];
Hasegawa PhyA(10)
[interpolation approximation, and some important systems];
Keshavarzi et al PhyA(10) [oscillators, statistics and thermodynamics];
Hasegawa PhyA(11) [Hubbard dimers, thermal entanglement];
> s.a. Scaling.
> Related topics: see Central-Limit Theorem;
distributions; numbers [deformation of the reals];
stochastic processes; uncertainty relations.
> Gravity-related applications:
see cosmic microwave background; cosmic rays;
early-universe cosmology and nucleosynthesis;
galaxy distribution.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 28 mar 2021