Phase Transitions |
In General
> s.a. Catastrophe; complexity;
critical phenomena; history of physics;
symmetry breaking.
* Idea: A thermodynamic state such that
a small change around it causes a thermodynamic quantity to vary discontinuously.
* First-order: The discontinuity
happens in a first derivative of a thermodynamic potential (for example, in the volume
V = ∂G/∂p for the water-vapor transition); In the
real physical process, the transition doesn't happen all at once, there is a latent
heat and phases may coexist.
* Second-order: The discontinuity happens
in a second derivative of some thermodynamic potential (for example, in the susceptibility
χ for a ferromagnet); The transition happens all at once, with no coexistence
or latent heat, and the energy density is C0 in
T, not C1; Fluctuations occur at all scales
and correlations are scale invariant; When such a phase transition occurs at absolute
zero, quantum mechanics comes into play, giving a quantum phase transition (and a quantum
critical point) where the interactions have infinite range not just in space but also
in time.
* Continuous: Like second-order, but
smoother; The energy density is C1 in T.
* Remark: If one uses the canonical ensemble,
a true phase transition can only be defined in the thermodynamic limit of infinite system size.
* Cause: Most phase transitions are a result
of thermal fluctuations; Quantum ones are different in that they are caused by fluctuations
allowed by the Heisenberg uncertainty principle and can happen at or near 0 K.
@ Texts: Brout 65;
Careri 84;
Stanley 87;
Yeomans 92;
Goldenfeld 93;
Kadanoff 00;
Onuki 02;
Gitterman & Halpern 04;
Hillert 07;
Zinn-Justin 07 [and renormalization group];
Uzunov 10;
Nishimori & Ortiz 11;
Gitterman 13;
Fultz 14 [III];
Stishov 18 [II].
@ General references: Ruelle CMP(77) [heuristic];
Lebowitz RMP(99)mp/00;
Tobochnik AJP(01)mar [critical phenomena, renormalization, RL];
Kadanoff JSP(09);
Bangu PhSc(09)oct [conceptual];
Kadanoff a1002;
Nogueira a1009-ln [field-theoretic methods];
Medved' et al EJP(13) [do-it-yourself modeling];
Singh a1402 [and mean-field theories and renormalization, pedagogical];
Hendi et al ChPC(19)-a1706 [new approach, motivated by quantum gravity].
@ Critical exponents: Brout PRP(74);
Cardy JPA(99)cm/98 [near fractal boundary];
Kumar & Sarkar PRE(14)-a1405 [new geometric critical exponents].
@ Non-equilibrium:
Wattis & Coveney JPA(01),
JPA(01) [and renormalization];
Koverda & Skokov PhyA(05) [fluctuations];
Hinrichsen PhyA(06) [intro];
Henkel et al 08,
Henkel & Pleimling 10;
news pt(19)mar [and file-compression algorithm];
> s.a. Percolation.
@ First-order: Binder RPP(87);
Zheng JPA(02) [short-time dynamics];
Gross cm/05 [and microcanonical statistics].
@ Continuous:
Schwartz JPA(03) [Fokker-Planck operator];
Sarig CMP(06) [for dynamical systems].
@ Other types: Tolédano & Dmitriev 96 [reconstructive phase transitions].
> And configuration-space metric: see thermodynamics
[thermodynamic curvature]; types of metrics [information geometry].
Examples and Analogs > s.a. Crumpling; Freezing;
Glass; lattice field theory; magnetism;
posets; spheres [packings]; water.
* First examples: Evaporation; Melting;
Sublimation (shrinking of ice cubes in freezer, dry ice, ink in printing).
* Mermin-Wagner theorem:
A 2D continuous system cannot undergo an order-disorder phase transition at finite T.
@ Fluids, other: Wilding AJP(01)nov [numerical];
Barmatz et al RMP(07) [experiments in microgravity];
Arinshtein TMP(07) [liquid-crystal];
Fabrizio JMP(08)
[ice-water and liquid-vapor, in Ginzburg-Landau model];
Radin NAMS-a1209 [fluid-solid transition, for mathematicians];
Brazhkin & Trachenko PT(12)nov [liquid-gas distinction, microscopic];
Shimizu et al PRL(14) [liquid-to-liquid phase transition in triphenyl phosphate];
> s.a. Superfluids.
@ Liquid crystals: Verma PLA(96) [Monte Carlo];
Singh PRP(00).
@ Spin systems: Costin et al JSP(90) [infinite-order];
Biskup in(09)mp/06;
Sadhukhan et al PRE(15)-a1412 [fluctuations and order];
> s.a. ising model; Potts Model.
@ Superconductivity: Watanabe FJMS(09)-a0808 [BCS-Bogoliubov theory, second-order nature].
@ On graphs, networks: Lyons JMP(00)m.PR/99 [graphs];
Goltsev et al PRE(03)cm/02 [networks];
Hartmann & Weigt 05 [statistical mechanics of combinatorial optimization];
Andrecut & Kauffman PLA(08) [random Boolean networks, order-disorder];
Radin a1601
[large combinatorial systems, graphons and permutons];
> s.a. graphs and graph types;
networks; XY Chain.
@ In 2D: Mermin & Wagner PRL(66);
Barber PRP(80);
Naumovets CP(89);
Antoni et al cm/99-proc [N-body];
Koibuchi PhyA(11) [triangulated surfaces on a spherical core].
@ Small systems:
Borrmann et al PRL(00) [classification];
Gross 01;
Dunkel & Hilbert PhyA(06) [canonical and microcanonical].
@ Higher-order: Janke et al NPB(06);
Stošić et al PhyA(09) [Ising model on Cayley tree];
Cunden et al JSP(19)-a1810 [3rd order, gas with pairwise interactions];
Chakravarty & Jain a2102 [critical exponents].
@ Condensed-matter systems:
Drouffe et al JPA(98) [condensation];
Eggers PRL(99) [in heated sand];
Mayorga et al PhyA(09) [precursors of order and disorder in colloids];
Williams & Ackland PRE(12)-a1212 [sudoku as a model frustrated glassy system];
Fultz 14 [in materials];
Kitagawa Phy(14) [re new phase in solid oxygen];
> s.a. Disordered Systems; Metals [metal-insulator].
@ Other examples: Stanley in(82) [geometric analog];
Fletcher AJP(97)jan [mechanical analog];
Fendley & Tchernyshyov NPB(02)cm [1D];
Biskup & Chayes CMP(03) [discontinuous];
Velasco & Fernández-Pineda AJP(07)dec [triple point];
English EJP(08) [spontaneous synchronization of oscillators];
Meshcherov AP(08) [conducting filament burnout];
Zweig et al PhyA(10) [random k-SAT problems];
Caldarelli Phy(12) [longevity/volatility of rankings];
> s.a. quantum phase transitions [dynamical].
> Examples in gravity:
see black holes; causal dynamical triangulations;
discrete gravity; event horizons;
inflation; lovelock gravity;
regge calculus.
> Other examples: see cellular automata;
computation [algorithmic phase transition]; crystals [melting];
differentiable manifolds; elements [Si melts when cooled];
Gross-Neveu Model; ideal gas [relativistic];
metamaterials [jamming transition]; molecular physics
[polymers]; quantum phase transitions [field theory and early-universe cosmology];
random tilings; topological defects;
Van der Waals fluid.
Related Topics > s.a. casimir effect [critical];
Lee-Yang Theory; scale invariance.
* Applications: A phase transition is
the basis for the operation of a Cloud Chamber;
For a quantum analog, see Huang et al PRA(09)-a0902.
@ General references:
Brokate & Sprekels 96 [hysteresis];
Latora et al PhyD(99)cd/98-conf [microscopic chaos];
Oppenheim et al PRL(03)qp/02 [and information];
Franzosi & Pettini PRL(04)cm/03 [origin],
NPB(07)mp/05;
Kholodenko & Ballard PhyA(07)
[Ginzburg-Landau equations from Hilbert-Einstein action];
Franco et al PRD(10)-a0911 [holographic approach];
Maslov TMP(10) [and superfluid transition];
Alhambra et al PRX(16)-a1504 [probability of a thermodynamically forbidden transition];
Delfino et al JSM(18)-a1803 [phase coexistence, structure of interfaces].
@ And configuration-space topology:
Franzosi et al mp/03,
NPB(07)mp/05;
Kastner PhyA(06),
RMP(08);
Gori et al a1706;
> s.a. XY Chain.
@ And symmetry breaking: Gill CP(98);
Baroni & Casetti JPA(06) [topological conditions];
Del Giudice & Vitiello PRA(06)cm [electromagnetic field and matter, phase locking];
Wen ISRN(13)-a1210 [topological order and phases];
del Campo & Zurek IJMPA(14)-a1310 [Kibble-Zurek mechanism and density of defects].
> Other related topics: see
Clausius-Clapeyron Equation; Critical Points;
Hysteresis; Order Parameter;
Topological Materials; Universality.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 20 feb 2021