Ising Models |
In General > s.a. spin models; 2D
gravity; lattice field theory [random].
* Idea: A crude model for
ferromagnetic domains, based on a lattice of N fixed atoms of
spin-1/2, with constant-coefficient Hamiltonian
H = −∑<ij> Jij si sj − μ ∑i=1N si B ,
where si = ± 1,
B is the z-component of the magnetic field and the interaction
energy is usually of the isotropic form Jij
= J (J > 0 for ferromagnetism, J < 0 for
antiferromagnetism); Without self-interactions, J = 0, the model is
trivially solvable and does not depend on dimensions or type of lattice.
* History: The model was
invented by the German physicist Wilhelm Lenz and investigated by his
student Ernst Ising in the 1920s; Ising analyzed a 1D version of the
model, and found no phase transition in the magnetization; A decade
later other physicists found hints of magnetization in 2D, and in 1944
Lars Onsager confirmed the existsnce of a phase transition with an exact
solution of the 2D Ising model; For three dimensions no exact solution
has ever been found, but computer simulations give unmistakable evidence
of an abrupt phase transition.
* Motivation: The 2D model
is the only non-trivial exactly solvable model of phase transition.
* Lee-Yang theorem:
For any graph, the zeros of the partition function of the ferromagnetic
Ising model lie on the unit circle in C; In fact, the
union of the zeros of all graphs is dense on the unit circle.
@ References: Ising ZP(25);
Imbrie PRL(84) [critical dimension];
Hayes AS(00)sep [I];
McCoy a1111-conf [rev];
Mosseri PRE(15)-a1409 [arbitrary graphs, energy spectrum from Hadamard transform];
Collevecchio et al a1409 [Prokofiev-Svistunov (worm) algorithm];
Ising et al a1706 [history];
Peters & Regts JLMS(19)-a1810 [arbitrary graphs, zeros of the partition function].
Cases and Techniques
> s.a. 2D ising models.
* In general: One can apply
the mean-field approximation, which totally fails in 1D and gets better
in higher dimensions, and the Bethe-Peierls approximation, which can be
regarded as the lowest level of a Cluster Variation Method.
* 1D: The model is simple
to solve and there is no spontaneous magnetization at any T, no
B = 0 phase transition; See, however, the transverse-field case.
@ 1D:
Pfeuty AP(70) [transverse field];
Reyes & Tsvelik NPB(06),
PRB(06)cm [correlation functions];
Mbeng et al a2009 [quantum Ising chain, intro].
@ 1D, variations: Cassandro et al CMP(09) [with long-range interaction, random field];
Yuan et al PhyA(09) [with next-nearest-neighbor interactions].
@ 3D: Imbrie CMP(85) [random field, ground state];
Nigmatullin & Toboev TMP(89) [and 2D, thermodynamics];
Dotsenko et al PRL(93) [cluster boundaries];
Regge & Zecchina JPA(00)cm/99 [different lattices];
Ron et al PhyA(05) [fixed point];
Kozlovskii et al NPB(06) [free energy and equation of state];
Chung PLA(06) [magnetization and specific heat];
Canfora PLB(07)cm [Kallen-Lehman approach];
Caselle et al JHEP(07) [Monte Carlo, free energy of interfaces];
Canpolat et al PS(07) [effective-field approximation];
Nigro JSM(08)-a0710;
Belletti et al JSP(09);
Bittner et al NPB(09) [anisotropy of the interface tension];
Litim & Zappalà PRD(11) [exponents, functional renormalization group approach];
Perk ChPB(13)-a1307;
Aizenman et al CMP(15)-a1311;
Gliozzi & Rago JHEP(14)-a1403 [critical exponents];
Cosme et al JHEP(15)-a1503 [conformal symmetry];
Talalaev a1805 [integrable structure];
Rychkov a2007 [conformal bootstrap approach];
> s.a. Scale Invariance.
@ 3D, random lattice:
Ivaneyko et al PhyA(06);
Lima et al PhyA(08).
@ 3D, with long-range-correlated disorder:
Weinrib & Halperin PRB(83).
@ 3D, other variations: van Enter JSP(05) [random boundary conditions];
Kondratiev & Zhizhina JSP(07) [with birth and death dynamics];
Basuev TMP(07) [in half-space].
@ Higher dimensions:
Yokota PhyA(06) [replica symmetry breaking];
Sakai CMP(07) [lace expansion];
Klein & March PLA(08) [critical exponents];
Coupier AAP(08)-m/06 [conditions for Poisson approximations];
Temesvári NPB(10)-a0911 [free energy, perturbative];
Bonzom et al PLB(12)-a1108 [random lattice, no phase transition in the continuum limit];
Chatterjee CMP(15)-a1404 [no replica symmetry breaking in the random field Ising model];
Ott & Velenik a2007 [correlations].
@ Antiferromagnetic: Azcoiti et al NPB(14) [Monte Carlo algorithm].
@ Other types: Bahmad et al PhyA(07) [mixed spin-1/2 and spin-1];
Serva PhyA(11) [dilute model];
Affonso et al a2105 [long-range systems].
@ Spin-3/2:
Canko & Keskin PLA(03) [ground state];
Keskin & Canko PLA(05) [relaxation phenomena near second-order phase transition];
Canko & Keskin PhyA(06).
@ Simulations:
Aktekin PhyA(96) [4D];
Cervera-Lierta Quant(18)-a1807 [1D, on a quantum computer];
Crosson & Slezak a2002 [path integral Monte Carlo].
> Techniques: see ClusterExpansion;
Master Equation; Mean-Field Method;
path integrals; renormalization group;
stochastic quantization.
References
> s.a. graph theory in physics; networks
/ Potts Model; regge calculus.
@ Phase transitions:
Prüßner et al PhyA(00) [2D and 3D, critical exponents];
Liu & Gitterman AJP(03)aug [2D and 3D, critical T];
Zurek et al PRL(05)cm [dynamics];
Romá et al PhyA(06) [new order parameter];
Shimizu & Kawaguchi PLA(06) [and entanglement];
Aguirre-Contreras et al PLA(06) [critical T, diluted model];
Pérez Gaviro et al JPA(06);
Dziarmaga PRB(06)cm [random lattice];
Pishtchev PLA(07) [critical exponents];
Machta et al JSP(08) [percolation signature];
Björnberg & Grimmett JSP(09)-a0901 [sharpness, hypercubic lattice];
Barré et al PhyA(09) [finite-size effects, random graphs];
Bissacot & Cioletti JSP(10)-a1001 [with non-uniform external fields];
Gessner et al EPL(14)-a1403 [monitoring the time evolution of a single spin];
Bonati EJP(14) [the Peierls argument in higher dimensions];
Duminil-Copin a1607-proc [random currents expansion];
> s.a. quantum phase transitions.
@ With magnetic field: Delfino JPA(04) [rev];
March PLA(14) [field of arbitrary strength];
Cioletti & Vila JSP(16)-a1506 [general lattices, graphical representation].
@ Entanglement:
Novotný et al JPA(05) [one- and two-particle states];
Grimmett et al JSP(08)-a0704 [asymptotic scaling];
Furman et al PRA(08)-a0805 [1D];
Chang & Wu PRA(10)-a1001 [dynamics, and phase transition];
Foss-Feig et al NJP(13)-a1306 [dynamics of spin-spin correlation functions].
@ Continuum limit: Manrique et al CQG(06)ht/05 [Ising field theory, loop quantization techniques].
@ Other formulations: Rosengren JPA(86),
da Costa & Maciel RBEF(03)mp [combinatorial];
Diego ht/05 [integral representation].
@ Other variations and generalizations: Meyer pr(92) [spacetime Ising models];
O'Connor et al JPA(07) [Ising-like models, equation of state];
Bazhanov et al PLA(08)-a0706 [Faddeev-Volkov model];
Hernández et al JMP(13)-a1301,
Hernández a1402
[coupled to 2D causal dynamical triangulations].
@ Related topics: Issigoni & Paraskevaidis PhyA(05) [roughening T];
Suzuki JSM(09)-a0807 [dynamics of temperature quenching];
Gu et al PhyD(09)-a0809 [emergent properties];
Streib et al JSP(14) [partition function, binomial approximation method];
Lubetzky & Sly a1401 [Glauber dynamics and information percolation];
Zintchenko et al PRB(15)-a1408 [ground states];
Bravyi & Hastings CMP-a1410 [complexity];
Navez et al PRB(17)-a1603 [propagation of quantum fluctuations];
Tee a2105 [emergent spacetime as the ground state];
> s.a. conformal invariance; Dimers;
thermalization.
> Online resources:
see Wikipedia page.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021