Spinors in Field Theory |
In General, Descriptions
* In quantum mechanics:
Spin is commonly thought to reflect the true quantum nature of microphysics.
@ In classical field theory: O'Donnell 03 [2-spinors in general relativity];
> s.a. field theory; fields in non-commutative space.
@ In quantum mechanics: Dirac 71;
Barros e Sa JMP(01)qp/00 [uncertainty];
Hofer qp/00;
Leader 01;
Erhart et al nPhys(12)jan-a1201
+ news SA(12)mar,
comment Kurihara a1201 [uncertainty, experimental].
@ Equations, dynamics:
Frauendiener & Sparling PRS(93);
Dvoeglazov IC(00)phy;
De Andrade & Vancea ht/01-en [action].
@ Fractional spin from gravity:
Friedman & Sorkin PRL(80),
GRG(82);
Samuel PRL(93) [(2+1) dimensions];
Arnsdorf & García CQG(99)gq/98;
Hadley CQG(00)gq;
Patiño & Quevedo MPLA(03)gq/02;
> s.a. particle statistics.
> Mathematical aspects and types:
see spin and spinors [including classification]; 2-spinors;
4-spinors; dirac fields; high-spin
and low-spin field theories.
> Related topics:
see formulations of quantum mechanics; path
integrals; statistical mechanics; spin-statistics
theorem; SU(2).
States and Classical Limit
> s.a. types of field theories [classical description, bosonization].
@ Coherent states: Makhankov et al JPA(96) [s ≥ 1];
Wang JOB(01)qp,
OC(01)qp;
Markham & Vedral PRA(03)qp/02 [classicality].
@ Other states: Mallesh et al JPA(01)qp/00 [spin squeezing].
@ Decoherence: De Raedt & Dobrovitski in(04)qp/03;
Zurek et al PRA(05)qp/03.
@ Classical limit: Evans JPA(96);
Bolivar JMP(01) [Pauli and Dirac equations in phase space].
@ Continuum limit: Fearnhead & Hannabuss AP(99) [in quantum optics].
Chirality and Helicity > s.a. neutrinos [helicity reversal].
* Chirality: A hidden symmetry of strong interactions, proposed by
Nambu and Jona-Lasinio in 1961; Its breaking gives the pion as Goldstone boson.
* Helicity: The projection
χ = s · p/p of the
spin of a particle onto the direction of its momentum, in units of \(\hbar\); For
a quantum particle of spin s, the helicity ranges from –s
to +s, but for a massless particle it can only be ±s.
@ Chirality: 't Hooft in(80);
Marques & Spehler JMP(01) [for spin-3/2 particles];
Kramer et al phy/05 [early papers].
@ Helicity: Białynicki-Birula et al JMP(81) [definition without momentum-space decomposition];
Yoshida et al JMP(14)-a1308 [relativistic];
> s.a. Wikipedia page.
Related Topics > s.a. electromagnetism;
energy-momentum; particle
statistics; experiments in quantum mechanics.
@ And matter: Weinberg & Witten PLB(80) [possible massless particles];
Goncharov IJMPA(94) [real fermionic/bosonic fields];
Crane gq/01 [as conical singularities];
Ahluwalia-Khalilova & Grumiller PRD(05)ht/04 [spin-1/2 fermion with mass dimension 1].
@ And entropy / information: Peres et al PRL(02)qp [spin entropy and special relativity],
comment Czachor PRL(05)qp/03.
@ And spacetime metric:
Saul PLA(03)
[electromagnetism and general relativity as moments of a statistical distribution of spins];
> s.a. angular momentum [at spatial infinity]; approaches
to quantum gravity; gravitating matter.
@ Other topics: Mannheim IJTP(84) [Majorana masses];
Peres & Scudo PRL(01)qp/00 [and spatial directions];
Jaffe AIP(01)hp [spin-physics review];
Marzuoli & Rasetti PLA(02)qp [spin recoupling and quantum info];
Chavoya-Aceves qp/03 [questioning];
> s.a. poincaré group [continuous spin].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 27 mar 2016