Spinors in Field Theory  

In General, Descriptions
* In quantum mechanics: Spin is commonly thought to reflect the true quantum nature of microphysics.
@ In classical field theory: O'Donnell 03 [2-spinors in general relativity]; > s.a. field theory; fields in non-commutative space.
@ In quantum mechanics: Dirac 71; Barros e Sa JMP(01)qp/00 [uncertainty]; Hofer qp/00; Leader 01; Erhart et al nPhys(12)jan-a1201 + news SA(12)mar, comment Kurihara a1201 [uncertainty, experimental].
@ Equations, dynamics: Frauendiener & Sparling PRS(93); Dvoeglazov IC(00)phy; De Andrade & Vancea ht/01-en [action].
@ Fractional spin from gravity: Friedman & Sorkin PRL(80), GRG(82); Samuel PRL(93) [(2+1) dimensions]; Arnsdorf & García CQG(99)gq/98; Hadley CQG(00)gq; Patiño & Quevedo MPLA(03)gq/02; > s.a. particle statistics.
> Mathematical aspects and types: see spin and spinors [including classification]; 2-spinors; 4-spinors; dirac fields; high-spin and low-spin field theories.
> Related topics: see formulations of quantum mechanics; path integrals; statistical mechanics; spin-statistics theorem; SU(2).

States and Classical Limit > s.a. types of field theories [classical description, bosonization].
@ Coherent states: Makhankov et al JPA(96) [s ≥ 1]; Wang JOB(01)qp, OC(01)qp; Markham & Vedral PRA(03)qp/02 [classicality].
@ Other states: Mallesh et al JPA(01)qp/00 [spin squeezing].
@ Decoherence: De Raedt & Dobrovitski in(04)qp/03; Zurek et al PRA(05)qp/03.
@ Classical limit: Evans JPA(96); Bolivar JMP(01) [Pauli and Dirac equations in phase space].
@ Continuum limit: Fearnhead & Hannabuss AP(99) [in quantum optics].

Chirality and Helicity > s.a. neutrinos [helicity reversal].
* Chirality: A hidden symmetry of strong interactions, proposed by Nambu and Jona-Lasinio in 1961; Its breaking gives the pion as Goldstone boson.
* Helicity: The projection χ = s · p/p of the spin of a particle onto the direction of its momentum, in units of \(\hbar\); For a quantum particle of spin s, the helicity ranges from –s to +s, but for a massless particle it can only be ±s.
@ Chirality: 't Hooft in(80); Marques & Spehler JMP(01) [for spin-3/2 particles]; Kramer et al phy/05 [early papers].
@ Helicity: Białynicki-Birula et al JMP(81) [definition without momentum-space decomposition]; Yoshida et al JMP(14)-a1308 [relativistic]; > s.a. Wikipedia page.

Related Topics > s.a. electromagnetism; energy-momentum; particle statistics; experiments in quantum mechanics.
@ And matter: Weinberg & Witten PLB(80) [possible massless particles]; Goncharov IJMPA(94) [real fermionic/bosonic fields]; Crane gq/01 [as conical singularities]; Ahluwalia-Khalilova & Grumiller PRD(05)ht/04 [spin-1/2 fermion with mass dimension 1].
@ And entropy / information: Peres et al PRL(02)qp [spin entropy and special relativity], comment Czachor PRL(05)qp/03.
@ And spacetime metric: Saul PLA(03) [electromagnetism and general relativity as moments of a statistical distribution of spins];
> s.a. angular momentum [at spatial infinity]; approaches to quantum gravity; gravitating matter.
@ Other topics: Mannheim IJTP(84) [Majorana masses]; Peres & Scudo PRL(01)qp/00 [and spatial directions]; Jaffe AIP(01)hp [spin-physics review]; Marzuoli & Rasetti PLA(02)qp [spin recoupling and quantum info]; Chavoya-Aceves qp/03 [questioning]; > s.a. poincaré group [continuous spin].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 27 mar 2016