Electromagnetism in Curved Spacetime  

In General > s.a. astrophysics; black-hole and gravitational phenomenology.
* Remark: In flat spacetime, the Coulomb law implies the Gauss law, but the latter is the one that generalizes to curved spacetime.
@ General references: Cohen & Kegeles PRD(74); Bini et al IJMPD(01)gq/00 [integral formulation]; Araujo Diniz et al ht/00; Tsagas CQG(05)gq/04; Sundkvist JMP(06) [covariant parametrization]; Mitskievich a0802 [classification of fields]; Notte-Cuello et al RPMP(08) [effective geometry]; Subramanian AN(10)-a0911 [early universe, rev]; Smolić CQG(14)-a1404 [spacetimes with symmetries]; Cabral & Lobo FP(16)-a1602 [and spacetime geometry]; Côté et al GRG(19)-a1905 [conformal invariance]; Mavrogiannis & Tsagas a2104 [in terms of potentials, with imperfect fluid, and cosmology].
@ Electric and magnetic fields: Ellis in(73); Crater AJP(94)oct, comment Vanzella et al AJP(96)aug; Mabin et al TPT(17) [phenomenology].
@ Asymptotics: Goldberg & Kerr JMP(64) [multipoles]; Alexander & Bergmann FP(84); Nolan AP(95) [NP]; Misner et al PRD(06) [numerical, beyond scri]; > s.a. spatial infinity [asymptotic symmetries].
@ Electric-magnetic duality: Deser et al PRD(97)ht/96 [black holes]; Cardoso et al PLB(96)ht [action for electric/magnetic currents].
@ Complex techniques: Kaiser JPA(04)gq/01 [Kerr-Newman fields]; Gsponer gq/04 [Lanczos-Newman electrodynamics].
> Related topics: see Geometrization; green functions; light [propagation]; polarization; wave phenomena.

Specific Types of Spacetimes > s.a. FLRW models; huygens' principle; null infinity.
@ Kerr black holes: Mukhopadhyay CQG(02)gq; Fernandes & Lahiri EPJC(19)-a1803; Grant & Flanagan CQG(20)-a1910 [conserved currents].
@ Other black holes: Harpaz FP(07) [electric field in Schwarzschild spacetime]; Valiente Kroon a0802 [near infinity]; > s.a. black-hole phenomenology; fields in schwarzschild space; generalized reissner-nordström spacetimes.
@ de Sitter spacetime: Otchik & Red'kov pr(86)-a1001 [waves]; Tsaregorodtsev & Medvedev G&C(98)gq [charged particle]; Cotăescu & Crucean PTP(10)-a0806; Bini et al GRG(10) [exact solution]; Veko et al NPCS-a1410.
@ Other cosmological models: Hu & Shiokawa PRD(98)gq/97 [FLRW + stochastic]; Montani & Cherubini IJMPD(05) [isotropic universe]; Fleury et al PRD(15)-a1410 [homogeneous, anisotropic Bianchi I universe].
@ Other spacetimes: Tomaschitz JMP(93) [multiply connected]; Perez Bergliaffa & Hibberd PRD(00)gq [wormholes]; Sakai & Shibata ApJ(03)ap/02 [and pulsars]; Alvarez & Olive CMP(06)ht/03 [manifolds with boundary]; Nouri-Zonoz CQG(04) [NUT space]; Padmanabhan & Padmanabhan GRG(10)-a0910 [Rindler space, as model for weak gravitational field]; Kassandrov G&C(11)-a1105 [Kerr-Schild spacetimes]; Asenjo & Hojman CQG(17)-a1608 [when waves do not propagate along null geodesics].
@ In higher dimensions: Mitskievich a0707-MG11; Dalmazi & Santos PRD(11)-a1105; Delphenich a1812 [5D]; Henneaux & Troessaert PRD(19)-a1903.
@ Generalized backgrounds: Wise CQG(06) [on a chain complex]; Tarasov MPLA(06)-a0711 [on a fractal]; Harikumar EPL(10)-a1002 [on κ-Minkowski spacetime, and duality].

Coupling to Gravity > s.a. lorentzian geometry [analog]; gravitating matter; unified theories.
* Motivation: Improved experimental tests of general relativity, including electromagnetic fields around black holes, and alternatives theories.
* Idea: The Maxwell equations in terms of (E, B) and (D, H) do not require a metric or connection, but the constitutive relationships between those two pairs do; The coupling to gravity may be non-minimal, and in particular it may require non-metricity and/or torsion.
@ General references: Bergmann et al PR(50) [with Einstein's general relativity]; Barut et al HPA(94) [and spacetime models]; & Toupin & Schoenberg; Senovilla gq/03-proc [conserved tensor]; Rosquist CQG(06)gq/04 [Compton scale effects]; Hehl & Obukhov GRG(08) [and the equivalence principle]; Füzfa PRD(16)-a1504 + news IBT(16)jan [artificial gravitational fields]; Vollick PRD(16)-a1612 [from modified Palatini action].
@ 3D: Barnich et al CQG(15)-a1503 [asymptotically flat]; Pérez et al JHEP(16)-a1512 [AdS spacetime, asymptotic structure].
@ Special situations: Shatskiy JETP(01)gq/02 [field of a ring current around a Kerr black hole]; Gürlebeck et al PRD(11) [layers of electric and magnetic monopoles and dipoles]; Vancea a1708 [field line solutions]; > s.a. gravitational waves; solutions of general relativity.
@ Non-minimal: Prasanna & Mohanty CQG(03) [constraints]; Balakin & Lemos CQG(05)gq; Annulli et al PRD(19)-a1901 [non-perturbative astrophysical effects].
@ With non-metricity and torsion: Vandyck JPA(96); Hehl & Obukhov LNP(01)gq/00.
@ In quantum spacetime: Lewandowski et al PRD(17)-a1709 [emergence of rainbow metric]; > s.a. non-commutative spacetime; photons in quantum gravity.

Phenomenology and Related Topics > s.a. electricity; modified electrodynamics [pre-metric]; self-dual fields.
@ General references: Cabral & Lobo EPJP(17)-a1603 [astrophysical applications]; Bunney & Gradoni a1912 [doppler and gravitational redshifts].
@ Gravitomagnetic effects: Nouri-Zonoz PRD(99)gq [Faraday rotation]; Kopeikin & Mashhoon PRD(02)gq/01.
@ Optical geometry: Sonego & Abramowicz JMP(98); Abramowicz & Sonego 04; Bittencourt et al CQG(16)-a1510 [importance and flexibility]; > s.a. optics; self-force.
@ Negative refraction: Lakhtakia et al PLA(05).

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 18 apr 2021