Black-Hole Hair: Specific Types  

Main Types of Black Holes > s.a. black holes [topology]; 3D black holes; supermassive black holes [Sgr A*].
@ Vacuum: Israel PR(67); Carter PRL(71), in(73)-GRG(09); Hawking CMP(72); in Hawking & Ellis 73; Robinson PRL(75); Mazur JPA(82), GRG(84); Bergqvist & Ludvigsen GRG(89), Mars CQG(00)gq [Kerr]; Ionescu & Klainerman IM(09)-a0711; Chruściel & Lopes Costa Ast-a0806 [Kerr]; Chruściel & Galloway CQG(10) [Schwarzschild, without analyticity]; Reiris a1501 [uniqueness of Schwarzschild without requiring asymptotic flatness].
@ Einstein-Maxwell: Israel CMP(68); Robinson PRD(74); Mazur APPB(83); Ruback CQG(88); Chruściel HPA(96)gq; Amsel et al PRD(10)-a0906 [extremal Kerr and Kerr-Newman, closing the gap in the uniqueness proof]; Chruściel & Nguyen AHP(10)-a1002 [degenerate Kerr-Newman black holes]; Chruściel & Galloway CQG(10) [Reissner-Nordström, without analyticity]; Meinel CQG(12)-a1112 [Kerr-Newman black hole, including the extreme case]; Wong & Yu CMP(14)-a1210 [non-existence of solutions with more than one event horizon close to the Kerr-Newman solution]; Hod PRD(14)-a1406 [Kerr-Newman black holes].
@ Einstein-Maxwell-dilaton: Mars & Simon ATMP(02)gq/01; Rogatko PRD(10)-a1007 [+ axion]; Yazadjiev PRD(10)-a1009 [rotating].
@ Einstein-Maxwell +: Finster et al CMP(99)gq/98 [+ Dirac, no-black-hole result]; Torii et al PRD(01) [+ scalar, in Anti-de Sitter spacetime]; Kolyvaris et al CQG(12)-a1111 [+ scalar, coupled to the Einstein tensor, phase transition to Einstein hair].
@ Einstein-Yang-Mills +: Finster et al MMJ(00)gq/99 [+ Dirac, no-black-hole result].
@ Other types: Wells gq/98 [accelerating black holes]; Bhattacharya & Lahiri PRL(07)gq, PRD(11)-a1102 [with positive cosmological constant]; Bueno & Shahbazi CQG(14) [violation, in 4D ungauged supergravity]; Li & Lucietti CQG(16) [transverse deformations of extreme horizons]; > s.a. black-hole analogs [acoustic].

Various Kinds of Matter / Hair > s.a. black-hole solutions.
* Scalar "wigs": Scalar field configurations that are not stationary (no theorems are violated), but for some parameter values are so long-lived to be almost like hair.
* Soft hair: Zero-energy hair associated with the conservation laws arising from BMS supertranslation symmetries on black-hole spacetimes; It can be thought of as gravitons and/or photons living on the lightlike boundary of the horizon; The concept points to a promising approach to the black-hole information problem.
@ Scalar hair: Bekenstein PRD(72), PRD(72); Christodoulou CMP(87); Ferrari & Xanthopoulos PRD(90); Bekenstein PRD(95); Mavromatos gq/96-conf [in Einstein-Yang-Mills and Einstein-Gauss-Bonnet]; Saa JMP(96)gq, PRD(96)gq [no-hair theorems]; Ortín ht/97-in; Sen & Banerjee Pra(01)gq/98; Rogatko PRD(99)ht [dilaton]; Banerjee et al MPLA(01); Degura et al G&C(01) [2+1]; Nucamendi & Salgado PRD(03)gq; Hertog PRD(06)gq; Graham & Jha PRD(14)-a1401 [no-hair theorem for a wide class of non-canonical scalar fields]; Herdeiro & Radu PRL(14)-a1403, CQG-a1501 [Kerr black holes], IJMPD(14)-a1405-GRF, PRD-a1406 [ergospheres, ergo-tori and ergo-Saturns]; Herdeiro & Radu IJMPD-a1504-conf [asymptotically flat, rev]; Sotiriou CQG(15)-a1505; Antoniou et al PRD(18)-a1711 [and Einstein-Gauss-Bonnet]; Hod PRD(17)-a2002 [spherically symmetric neutral black holes]; García & Salgado PRD(19)-a1812 [obstructions to no-hair theorems around Kerr black holes].
@ Scalar "wigs": Barranco et al PRL(12)-a1207 [around Schwarzschild black holes], PRD(14)-a1312 [late-time behavior]; Barranco et al PRD(17)-a1704.
@ Scalar hair, with cosmological constant: Torii et al PRD(99)gq/98, PRD(01) [asymptotically AdS]; Winstanley FP(03)gq/02; Sudarsky & González PRD(03) [asymptotically AdS]; Martínez & Troncoso PRD(06) [charged]; Buchel & Pagnutti NPB(10)-a0904.
@ Axionic hair: Bowick et al PRL(88); > s.a. axions.
@ Abelian Higgs hair: Achúcarro et al PRD(95)gq [Nielsen-Olesen string]; Chamblin et al PRL(98), PRD(98) [extreme]; Ghezelbash & Mann PRD(02) [rotating and charged black holes].
@ With Skyrme hair: Droz et al PLB(91); Moss et al CQG(00)gq; Tamaki et al PRD(01)gq.
@ Yang-Mills hair: Bizoń PRL(90), Straumann & Zhou PLB(90) [SU(2) Einstein-Yang-Mills]; Mavromatos & Winstanley JMP(98); Kleihaus et al AIP(98)gq; Ashtekar et al CQG(01)gq/00 [as bound states with colored solitons]; Kleihaus & Kunz PRL(01) [SU(2) Einstein-Yang-Mills, rotating]; Weinberg gq/01-ln; Kleihaus et al CQG(16)-a1609 [rotating, non-Abelian hair].
@ Quantum hair: Krauss GRG(90); Preskill & Krauss NPB(90); Coleman et al PRL(91), GRG(92), NPB(92); Krauss & Liu NPB(97)ht/96 [effects]; Dabholkar & Trivedi JHEP(99) [discrete, in AdS]; Dvali PRD(06)ht [massive spin-2], ht/06 [long-range super-massive tensor fields]; Dvali & Gómez PLB(13); Crowell & Cotrda Entr-a2007 [colliding black holes and information].
@ Short hair: Núñez et al PRL(96)gq/95; Brown & Husain IJMPD(97)gq; Hod PLB(14)-a1411 [short bristles on rotating black holes]; Hod CQG(16)-a1705 [no-short scalar hair theorem].
@ Soft hair: Hawking et al PRL(16)-a1601 + AS interview sa(16)jan [explicit description and degrees of freedom] + CQG+; Averin et al JHEP(16)-a1601; Kirklin CQG(18) [localization of soft charges, and thermodynamics]; > s.a. 3D black holes [BTZ]; isolated horizon.
@ Other kinds: Strominger PRL(96)ht [statistical, from string theory]; Krauss et al PRL(96)ht [hairy, dirty black holes]; Larsen & Wilczek NPB(96)ht, NPB(97)ht/96 [from string theory]; Bronnikov & Zaslavskii PRD(08)-a0801 ["curly hair"]; Gregory et al JHEP(13)-a1303 [rotating, with cosmic string hair].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 3 jul 2020