Black-Hole Hair: Specific Types |
Main Types of Black Holes
> s.a. black holes [topology]; 3D black holes;
supermassive black holes [Sgr A*].
@ Vacuum: Israel PR(67);
Carter PRL(71),
in(73)-GRG(09);
Hawking CMP(72);
in Hawking & Ellis 73;
Robinson PRL(75);
Mazur JPA(82),
GRG(84);
Bergqvist & Ludvigsen GRG(89),
Mars CQG(00)gq [Kerr];
Ionescu & Klainerman IM(09)-a0711;
Chruściel & Lopes Costa Ast-a0806 [Kerr];
Chruściel & Galloway CQG(10) [Schwarzschild, without analyticity];
Reiris a1501 [uniqueness of Schwarzschild without requiring asymptotic flatness].
@ Einstein-Maxwell: Israel CMP(68);
Robinson PRD(74);
Mazur APPB(83);
Ruback CQG(88);
Chruściel HPA(96)gq;
Amsel et al PRD(10)-a0906 [extremal Kerr and Kerr-Newman, closing the gap in the uniqueness proof];
Chruściel & Nguyen AHP(10)-a1002 [degenerate Kerr-Newman black holes];
Chruściel & Galloway CQG(10) [Reissner-Nordström, without analyticity];
Meinel CQG(12)-a1112 [Kerr-Newman black hole, including the extreme case];
Wong & Yu CMP(14)-a1210
[non-existence of solutions with more than one event horizon close to the Kerr-Newman solution];
Hod PRD(14)-a1406 [Kerr-Newman black holes].
@ Einstein-Maxwell-dilaton: Mars & Simon ATMP(02)gq/01;
Rogatko PRD(10)-a1007 [+ axion];
Yazadjiev PRD(10)-a1009 [rotating].
@ Einstein-Maxwell +: Finster et al CMP(99)gq/98 [+ Dirac, no-black-hole result];
Torii et al PRD(01) [+ scalar, in Anti-de Sitter spacetime];
Kolyvaris et al CQG(12)-a1111 [+ scalar, coupled to the Einstein tensor, phase transition to Einstein hair].
@ Einstein-Yang-Mills +: Finster et al MMJ(00)gq/99 [+ Dirac, no-black-hole result].
@ Other types: Wells gq/98 [accelerating black holes];
Bhattacharya & Lahiri PRL(07)gq,
PRD(11)-a1102 [with positive cosmological constant];
Bueno & Shahbazi CQG(14) [violation, in 4D ungauged supergravity];
Li & Lucietti CQG(16)
[transverse deformations of extreme horizons];
> s.a. black-hole analogs [acoustic].
Various Kinds of Matter / Hair > s.a. black-hole solutions.
* Scalar "wigs":
Scalar field configurations that are not stationary (no theorems are violated),
but for some parameter values are so long-lived to be almost like hair.
* Soft hair: Zero-energy
hair associated with the conservation laws arising from BMS supertranslation
symmetries on black-hole spacetimes; It can be thought of as gravitons and/or
photons living on the lightlike boundary of the horizon; The concept points
to a promising approach to the black-hole information problem.
@ Scalar hair:
Bekenstein PRD(72),
PRD(72);
Christodoulou CMP(87);
Ferrari & Xanthopoulos PRD(90);
Bekenstein PRD(95);
Mavromatos gq/96-conf
[in Einstein-Yang-Mills and Einstein-Gauss-Bonnet];
Saa JMP(96)gq,
PRD(96)gq [no-hair theorems];
Ortín ht/97-in;
Sen & Banerjee Pra(01)gq/98;
Rogatko PRD(99)ht [dilaton];
Banerjee et al MPLA(01);
Degura et al G&C(01) [2+1];
Nucamendi & Salgado PRD(03)gq;
Hertog PRD(06)gq;
Graham & Jha PRD(14)-a1401 [no-hair theorem for a wide class of non-canonical scalar fields];
Herdeiro & Radu PRL(14)-a1403,
CQG-a1501 [Kerr black holes],
IJMPD(14)-a1405-GRF,
PRD-a1406 [ergospheres, ergo-tori and ergo-Saturns];
Herdeiro & Radu IJMPD-a1504-conf [asymptotically flat, rev];
Sotiriou CQG(15)-a1505;
Antoniou et al PRD(18)-a1711 [and Einstein-Gauss-Bonnet];
Hod PRD(17)-a2002 [spherically symmetric neutral black holes];
García & Salgado PRD(19)-a1812 [obstructions to no-hair theorems around Kerr black holes].
@ Scalar "wigs":
Barranco et al PRL(12)-a1207 [around Schwarzschild black holes],
PRD(14)-a1312 [late-time behavior];
Barranco et al PRD(17)-a1704.
@ Scalar hair, with cosmological constant: Torii et al PRD(99)gq/98,
PRD(01) [asymptotically AdS];
Winstanley FP(03)gq/02;
Sudarsky & González PRD(03) [asymptotically AdS];
Martínez & Troncoso PRD(06) [charged];
Buchel & Pagnutti NPB(10)-a0904.
@ Axionic hair:
Bowick et al PRL(88);
> s.a. axions.
@ Abelian Higgs hair: Achúcarro et al PRD(95)gq [Nielsen-Olesen string];
Chamblin et al PRL(98),
PRD(98) [extreme];
Ghezelbash & Mann PRD(02) [rotating and charged black holes].
@ With Skyrme hair:
Droz et al PLB(91);
Moss et al CQG(00)gq;
Tamaki et al PRD(01)gq.
@ Yang-Mills hair:
Bizoń PRL(90),
Straumann & Zhou PLB(90) [SU(2) Einstein-Yang-Mills];
Mavromatos & Winstanley JMP(98);
Kleihaus et al AIP(98)gq;
Ashtekar et al CQG(01)gq/00 [as bound states with colored solitons];
Kleihaus & Kunz PRL(01) [SU(2) Einstein-Yang-Mills, rotating];
Weinberg gq/01-ln;
Kleihaus et al CQG(16)-a1609 [rotating, non-Abelian hair].
@ Quantum hair: Krauss GRG(90);
Preskill & Krauss NPB(90);
Coleman et al PRL(91),
GRG(92),
NPB(92);
Krauss & Liu NPB(97)ht/96 [effects];
Dabholkar & Trivedi JHEP(99) [discrete, in AdS];
Dvali PRD(06)ht [massive spin-2],
ht/06 [long-range super-massive tensor fields];
Dvali & Gómez PLB(13);
Crowell & Cotrda Entr-a2007 [colliding black holes and information].
@ Short hair: Núñez et al PRL(96)gq/95;
Brown & Husain IJMPD(97)gq;
Hod PLB(14)-a1411 [short bristles on rotating black holes];
Hod CQG(16)-a1705 [no-short scalar hair theorem].
@ Soft hair: Hawking et al PRL(16)-a1601
+ AS interview sa(16)jan [explicit description and degrees of freedom]
+ CQG+;
Averin et al JHEP(16)-a1601;
Kirklin CQG(18)
[localization of soft charges, and thermodynamics];
> s.a. 3D black holes [BTZ];
isolated horizon.
@ Other kinds: Strominger PRL(96)ht [statistical, from string theory];
Krauss et al PRL(96)ht [hairy, dirty black holes];
Larsen & Wilczek NPB(96)ht,
NPB(97)ht/96 [from string theory];
Bronnikov & Zaslavskii PRD(08)-a0801 ["curly hair"];
Gregory et al JHEP(13)-a1303 [rotating, with cosmic string hair].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 3 jul 2020