Isolated and Dynamical Horizons |
Isolated Horizons > s.a. laws of black-hole thermodynamics;
multipoles; numerical relativity;
quasilocal general relativity.
* Relationships:
A Killing horizon is always an isolated horizon.
@ General references: Ashtekar et al CQG(99)gq/98,
ATMP(00)gq/99 [phase space],
CQG(00)gq/99 [mechanics],
AdP(00)gq/99,
PRL(00)gq,
CQG(02)gq/01 [geometry];
Date CQG(00)gq [spin coefficients];
Ashtekar et al ATMP(02)gq [2+1];
Gourgoulhon & Jaramillo PRP(06)gq/05,
Jaramillo IJMPD(11) [3+1 view];
Engle & Liko a1112-ch [rev];
Lewandowski et al a1602-conf [and near-horizon geometries].
@ With matter: Ashtekar & Corichi CQG(00)gq/99 [dilaton];
Corichi et al PRD(00)gq [Einstein-Yang-Mills theory];
Ashtekar et al CQG(03)gq [scalar field];
Corichi et al PRD(06)gq/05 [hairy Einstein-Higgs black holes];
Liko & Booth CQG(08)-a0712 [Einstein-Maxwell-Chern-Simons theory in odd D ≥ 5];
Liko PRD(09)-a0901 [p-form matter fields];
Chatterjee AP(11)
[non-minimally coupled scalar fields, Holst action];
Krishnan CQG(12)-a1204 [near-horizon geometry].
@ Entropy: Ashtekar & Corichi CQG(03)gq;
Basu et al PRD(10)-a0907;
Engle et al PRD(10)-a1006;
Pérez & Pranzetti Entr(11)-a1011 [SU(2)-invariant phase space];
Ghosh & Pérez PRL(11)-a1107 [Planck scale and universal horizon temperature];
Diaz-Polo & Pranzetti Sigma(12) [in lqg];
Zhang CQG(14) [from the surface term in the gravitational action].
@ Hair: Corichi & Sudarsky gq/00-MG9;
Mao et al CQG(17)-a1606 [soft hair, implanted by electromagnetic fields].
@ Other properties: Date CQG(01)gq [and Killing horizons];
Dreyer et al PRD(03)gq/02 [numerical];
Lewandowski & Pawłowski CQG(03)gq/02 [uniqueness];
Pawłowski et al CQG(04)gq/03 [spacetime foliations];
Booth & Fairhurst PRD(08)-a0708 [extremality];
Lewandowski & Pawłowski CQG(14)-a1404 [neighborhoods, radial expansion and stationarity].
@ Quantum:
Ashtekar et al CQG(05)gq/04 [with distortion and rotation];
Bojowald & Swiderski PRD(05) [spherical];
Engle JPCS(05)gq [distorted, rotating, entropy];
Beetle & Engle CQG(10)-a1007 [generic horizons];
Engle & Beetle JPCS(12)-a1112 [entropy];
Majhi CQG(14)-a1205 [microcanonical entropy];
Pithis PRD(13)-a1208 [quantum states and entropy];
Majhi CQG(13) [stability],
PRD(13),
AHEP(16)-a1312 [thermodynamics];
Bodendorfer CQG(14)-a1402 [entanglement entropy and horizon entropy in loop quantum gravity];
Ghosh & Pranzetti NPB(14)-a1405 [cft/gravity duality];
Eder & Sahlmann a1801 [charged isolated horizons];
> s.a. quantum black holes.
Specific Types of Spacetimes
> s.a. born-infeld theory; Skyrmions.
@ Rotating: Ashtekar et al PRD(01)gq;
Wang & Huang a1505 [symplectic form, entropy].
@ Kerr geometries: Lewandowski & Pawłowski IJMPD(02)gq/01;
Röken a1303 [connection variables].
@ Asymptotically AdS: Ashtekar et al CQG(07)gq/06 [covariant phase space, first law];
Booth & Liko PLB(08)-a0808 [supersymmetric].
@ Higher-dimensional spacetimes: Korzyński et al CQG(05)gq/04;
Liko & Booth CQG(07)-a0705 [in Einstein-Gauss-Bonnet gravity];
Bodendorfer et al CQG(14)-a1304 [in terms of new variables].
@ Other types of spacetimes: Lewandowski CQG(00)gq/99 [vacuum];
Senovilla JHEP(03)ht [with no trapped surfaces].
Dynamical Horizons
> s.a. black-hole phenomenology [evolution]; constraints
in general relativity; numerical relativity.
@ General references: Ashtekar & Krishnan PRL(02)gq,
PRD(03)gq [fluxes, laws],
LRR(04)gq [review, applications];
Hayward PRL(04)gq [first law];
Ashtekar & Galloway ATMP(05)gq [uniqueness, isometries];
Andersson et al PRL(05) [local existence];
Bartnik & Isenberg CQG(06)gq/05 [spherical, nasc];
Hayward gq/06 [conservation laws];
Booth & Fairhurst PRD(08)-a0708 [extremality].
@ Specific spacetimes: Sawayama PRD(06)gq/05 [evaporating Vaidya black hole].
@ Related topics: Di Criscienzo & Vanzo EPL(08)-a0803 [fermion tunneling];
Nielsen & Yoon CQG(08) [surface gravity].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 13 jan 2018