Statistical Mechanical Equilibrium  

In General > s.a. ergodic theory; fluctuations; states; thermodynamics; wigner functions.
* Foundational problem: Physically, what we know or don't know about a system can't affect its evolution, but in a statistical mechanics interpretation of thermodynamics the information is crucial in explaining the evolution towards equilibrium.
* Calculations: All quantities of interest can be obtained from the distribution function; The easiest one to use is the canonical one.
@ Notions of equilibrium: Lavis SHPMP(05); Pitowsky SHPMP(06); Lavis PhSc(08)dec [degrees of equilibrium, incorporating the Boltzmann and Gibbs approaches]; Werndl & Frigg SHPMP(15)-a1510, a1510 [new definition of equilibrium, and results]; Werndl & Frigg a1606-in [general criteria for the existence of an equilibrium state], a1607-proc [with stochastic microdynamics].
@ Notions of equilibrium, quantum systems: Bogdanov et al qp/06-conf [as an effect of quantum entanglement]; del Rio et al PRE(16)-a1401 [thermalization relative to a particular reference].

Approach to Equilibrium / Thermalization > s.a. history of physics.
* Approach to thermal equilibrium: The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics; Some results are known, such as the correlation between relaxation to equilibrium and chaos (Krylov showed that a sufficient condition is that the system be mixing), but it remains an open problem.
* Approaches: Statistical mechanics attempts to situate equilibrium at the macroscopic level in the Boltzmann approach and at the statistical level in the Gibbs approach; The issue has not really been settled.
* Remark: The distribution function in some phenomena, such as very unstable systems like K-flows, appears to be fundamental, and not just a way of encoding our ignorance.
@ History: Goldstein LNP-cm/01 [Boltzmann's analysis]; Leeds PhSc(03)jan [Albert's vs Boltzmann's approach].
@ Approach to equilibrium: Lebowitz RMP(99)mp/00; Flores-Hidalgo et al PRA(09)-a0903 [renormalized-coordinate approach]; Reimann & Evstigneev PRE(13)-a1311 [under experimentally realistic conditions]; Malabarba et al a1604, Dong et al a1706 [classical vs quantum equilibration]; > s.a. arrow of time; diffusion; H-Theorem; thermodynamics [foundations].
@ And ergodicity and chaos: Srednicki PRE(94)cm, NYAS(95)cm/94, cm/94 [chaos]; Earman & Rédei BJPS(96) [and ergodic theory]; Gallavotti Chaos(98), cm/06 [rev; ensembles, ergodicity and chaoticity]; Vranas PhSc(98)dec [generalized, "epsilon" ergodicity]; Zaslavsky PT(99)aug [limitations of chaotic dynamics, relaxation to equilibrium and decay of fluctuations]; Srednicki JPA(99)cm [quantum chaotic system]; Castiglione et al 08 [and dynamical systems].
@ Microcanonical equilibrium: Bander cm/96; Hari Dass et al IJMPA(03)cm/01.
@ Related topics: Batterman PhSc(98)jun [Khinchin's program]; Wang et al AJP(07)may [equilibrium with few particles]; D'Alessio et al AiP(16)-a1509 [eigenstate thermalizaton hypothesis and consequences]; > s.a. Maxwell-Boltzmann Distribution; Thermodynamic Limit.

Thermalization of a Quantum System > s.a. quantum statistical mechanics [equilibrium states].
* Idea: One can get mixed states from pure states by coarse-graining, or some self-thermalization.
@ General references: Albert BJPS(94) [and the collapse of a quantum wave function]; Hari Dass et al IJMPA(03)cm/01 [self-thermalization]; Scarani EPJST(07)-a0707 [entanglement and irreversibility]; Reimann PRL(08), comment Gong & Duan a1109 [realistic quantum system]; Linden et al PRE(09)-a0812; Lychkovskiy PRE(10)-a0903; Yuan et al JPSJ(09)-a0904 [decoherence and thermalization]; Cho & Kim PRL(10)-a0911 [from pure quantum states]; Yuan et al JPSJ(09)-a0904 [decoherence and thermalization]; Cho & Kim PRL(10)-a0911 [from pure quantum states]; Tasaki a1003 [proof and examples]; Ponomarev et al PRL(11)-a1004; Dizadji-Bahmani PhSc(11) [Aharonov approach]; Riera et al PRL(12)-a1102 [in nature and on a quantum computer]; Ponomarev et al EPL(12)-a1107 [between two finite systems, from equipartition]; Cui et al a1110; Cramer NJP(12)-a1112 [randomized local Hamiltonians]; Rigol & Srednicki PRL(12) [alternatives to the Eigenstate Thermalization Hypothesis]; Larson JPB(13)-a1304 [and non-integrability]; Yang et al PRE(14)-a1311 [canonical vs non-canonical equilibration dynamics]; Xiong et al SRep(15)-a1311 [and non-Markovian dynamics]; Khlebnikov & Kruczenski a1312 [isolated system]; Gogolin & Eisert RPP(16)-a1503 [rev]; De Palma et al PRL(15)-a1506, Hosur & Qi PRE(16)-a1507 [eigenstate thermalization]; Ithier & Benaych-Georges a1510 [from first principles], a1706 [and random interactions]; Zhdanov et al a1706 [not without correlations].
@ Time scales: Brandão et al PRE(12)-a1108 [under a random Hamiltonian]; Short & Farrelly NJP(12)-a1110 [bound]; Goldstein et al PRL(13)-a1307, NJP(15)-a1402; García-Pintos et al a1509; Farrelly a1512.
@ Macroscopic, many-body systems: Goldstein et al PRE(10)-a0911; Reimann NJP(10); Torres-Herrera et al a1403/PS [many-body systems, numerical and analytical studies]; Tasaki JSP(16)-a1507 [isolated, and typicality]; Ostilli & Presilla a1611 [phenomenological theory]; Swingle & Yao Phy(17) scrambling of information in spin systems]; > s.a. Superpositions.
@ Other types of systems: Belton CMP(10) [quantum random walks]; Kota et al JSM(11)-a1102 [two-body random ensemble]; Veniaminov a1112 [interacting particles in a random medium]; Blanc & Lewin JMP(12)-a1201 [for disordered quantum Coulomb systems]; Kay a1209 [system and bath of comparable sizes, and black holes]; Sedlmayr et al PRL(13)-a1212 [1D fermionic chain]; Zhuang & Wu PRE(13)-a1308 [chaotic system]; Campbell et al SRep(16)-a1507 [bosonic atoms in a double-well potential].

Examples of Systems
@ General references: Rothstein AJP(57)nov [irreversibility and information in nuclear spin echo]; Nauenberg AJP(04)mar [radiation].
@ Breakdown of thermalization: news pw(06)apr [gas that does not approach equilibrium]; Rigol PRL(09) [and integrability]; Wang et al EPJD(13)-a1207 [non-Markovian dynamics in a spin star system].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 jul 2017