Cosmological Singularities  

In General
@ General references: Ove PRD(89) [expanding spacetimes]; Tchapnda CQG(04) [Einstein-Vlasov-cosmological constant]; Kotsakis & Klaoudatou JPCS(05)gq [rev], JGP(07)gq/06 [and Bel-Robinson energy]; Małkiewicz & Piechocki CQG(06) [quantum particle as probe]; Dabrowski & Balcerzak gq/07-MGXI; Uggla a0706-MGXI; Belinski AIP(10)-a0910 [rev]; Fernández-Jambrina & Lazkoz a1001-MG12 [rev]; Belinski IJMPA(14); Bars et al PRD(14) [tracing the classical cosmological evolution from big crunch to big bang]; Cherkas & Kalashnikov a1504 [Gowdy, initial conditions at a cosmological singularity]; Belinski & Henneaux 17; > s.a. Big Freeze; FLRW geometry; singularities [history].
@ Future singularities: Kotsakis & Klaoudatou JGP(05); Cotsakis gq/06-proc; Beltrán Jiménez et al EPJC(16)-a1602 [cosmic doomsday].
@ Sudden singularities: Lake CQG(04); Barrow CQG(04)gq; Fernández-Jambrina & Lazkoz PRD(04)gq; Barrow et al CQG(10)-a1004 [solution near a sudden singularity]; de Haro et al PRD(12)-a1204 [in semiclassical gravity]; Barrow & PRD(13)-a1307 [no geodesic incompleteness].
@ FLRW milestones: Cattoën & Visser CQG(05)gq, JPCS(07)gq/06; Cattoën MSc-gq/06; Cattoën & Visser gq/06-MGXI [behavior].
@ String-inspired: Larsen & Wilczek PRD(97), Cornalba et al NPB(02) [resolution]; Liu et al gq/03; Sánchez IJMPA(03)ht.

Approach to the Singularity > s.a. quantum-gravity phenomenology; singularities [extending the spacetime].
* BKL conjecture: In spatially inhomogeneous cosmologies, collapse is dominated by local Kasner or Mixmaster behavior; 2001, generic Bianchi IX spacetimes converge towards the Mixmaster attractor; 2016, Almost every Bianchi VIII and IX vacuum solution forms particle horizons and converges to the Mixmaster attractor.
@ General references: Lifshitz & Khalatnikov AiP(63); Belinskii & Khalatnikov JETP(69), et al AiP(70), AiP(82) [singularity in time]; Nolan CQG(01)gq [isotropic]; Deshingkar et al PRD(02)gq/01 [spherical]; Garfinkle PRL(04)gq/03 [numerical]; Khalatnikov et al JCAP(03) [2-fluid]; Garfinkle IJMPD(04)gq-GRF; Andersson et al PRL(05)gq/04 [asymptotic silence]; Heinzle et al ATMP(09)-gq/07 [billiard attractor]; Damour & de Buyl PRD(08)-a0710 [using Iwasawa variables]; Henneaux a0806-fs [hyperbolic Coxeter groups and Lorentzian Kac-Moody algebras]; Ashtekar et al CQG(09)-a0811, PRD(11)-a1102 [in canonical general relativity]; Reiterer & Trubowitz a1005 [BKL and Bianchi VIII-IX models]; Damour & Lecian PRD(11)-a1011, IJMPcs(12)-a1103 [statistical properties of cosmological billiards]; Galimova a1403 [BKL for Bianchi VIII and IX]; Brehm a1606 [particle horizons for Bianchi VIII and IX].
@ Inhomogeneous: Montani CQG(95); Berger gq/98-conf; Berger et al MPLA(98)gq; Weaver et al PRL(98); Berger gq/01-proc.
@ 2-torus symmetry: Weaver et al gq/01-MG9; Berger et al PRD(01)gq.
@ U(1) symmetry: Berger & Moncrief PRD(98)gq [polarized], PRD(98) [generic]; Isenberg & Moncrief CQG(02)gq [vacuum]; Berger CQG(04)gq/03.
@ Other types: Parnovsky CQG(90) [timelike]; Andersson & Rendall CMP(01)gq/00 [quiescent]; Parnovsky a1209 [timelike]; Rendall a1212-proc [construction of oscillatory singularities]; Klinger MS-a1507 [non-chaotic]; > s.a. bianchi models; chaos in bianchi models; models in numerical relativity.
@ Various theories: Berger PRD(00)gq/99 [with scalar field]; Damour et al CQG(03)ht/02 [Einstein-dilaton-p-form]; Benini et al CQG(05)gq [higher dimensions].

Homogeneous Models > s.a. s.a. bianchi cosmologies [whimper]; bianchi models.
* Bianchi IX: The "attractor theorem" states that the past asymptotic behavior of generic type IX solutions is governed by Bianchi type I and II vacuum states.
@ References: Collins & Ellis PRP(79); De Rop GRG(89) [VI & VII]; Rendall CQG(97)gq; Ringström AIHP(01)gq/00 [IX]; Abramo et al IJTP(03)gq, PRD(03) [non-minimal scalar]; Montani et al IJMPA(08)-a0712 [IX, classical and quantum]; Heinzle & Uggla CQG(09)-a0901, CQG(09)-a0901 [Bianchi IX], GRG(13) [spike statistics in Kasner sequences]; > s.a. Silent Universes.

Other Models > s.a. brane world; gowdy spacetime.
@ Isotropic singularities: Goode & Wainwright CQG(85); Tod CQG(90); Goode et al CQG(92); Scott & Ericksson gq/98-proc; Ericksson & Scott GRG(00)gq/01 [shear-free], GRG(02)gq/03 [and matter]; Anguige & Tod AP(99)gq, AP(99)gq; Anguige AP(00)gq/99; Klaoudatou & Cotsakis JPCS(07)gq/06-proc [and Bel-Robinson energy]; Barrow & Middleton PRD(07)gq [in quadratic gravity, stable]; Tod CQG(07)-a0705 [with cosmological constant]; Lübbe & Tod AP(08) [polytropic perfect fluid Bianchi models, global extension theorem].
@ Inhomogeneous: Rendall GRG(95)gq/94 [plane symmetry with scalar field], gq/98-proc; Berger & Moncrief PRD(00)gq, PRD(00)gq [U(1) symmetry].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 jul 2017