![]() |
In General
> s.a. asymptotic flatness at null infinity; models
in numerical relativity; solutions of einstein's equation.
* Idea: Spacetimes with
two spacelike Killing vector fields.
* Topology: In the spatially
compact case (the Killing vector fields commute) it can be
T3 × \(\mathbb R\)1,
S3 × \(\mathbb R\)1,
or S2 × S1 ×
\(\mathbb R\)1.
* Metric: In the torus case, with partial
gauge fixing (and calling x1 = θ,
one of the angles),
ds2 = −N 2 dt2 + h11 [dθ + N 1dt]2 + ∑a, b = 2, 3 hab (dxa)2 .
* Polarized case: Diagonal
metrics, only one gravitational degree of freedom; Can be reduced to 2+1 gravity
to a massless scalar field.
* Unpolarized case:
Less tractable, requires numerical treatment.
References
@ General: Gowdy PRL(71);
Misner PRD(73);
Gowdy AP(74);
Tanimoto JMP(98)gq [generalizations];
Rendall JGP(12) [spatially topologically twisted].
@ Exact solutions: Obregón & Ryan gq/98;
Ringström MPCPS(04)gq/02;
Sánchez et al JMP(04)gq/03 [generating method].
@ Integrals of motion:
Manojlović & Spence NPB(94).
@ Observables: Husain PRD(96)gq [evolution, Ashtekar variables];
Torre CQG(06)gq/05 [polarized, all weak observables].
@ In string theory: Narita et al CQG(00)gq;
Cisneros-Pérez et al ht/03-conf [and Kantowski-Sachs].
@ With matter: Barbero et al CQG(07)-a0707 [massless scalar fields, canonical];
Gómez Vergel PhD(09)-a0910 [classical and quantum].
@ Foliations: Berger et al AP(97);
Andréasson CMP(99)gq/98 [Einstein-Vlasov].
@ Asymptotic evolution: Jurke CQG(03)gq/02 [polarized T3];
Berger gq/02/PRD [vacuum].
@ Cauchy horizons: Chruściel & Lake CQG(04)gq/03;
Quevedo GRG(06)gq/04.
@ Related topics: Verdaguer PRP(93) [solitons];
Andersson et al CQG(04)gq/03-fs [scale-invariant variables];
Gad ASS(04)gq/04 [energy and momentum distributions];
Gambini et al PRD(05)gq [consistent discretization];
Beyer & LeFloch PRD(11) [geodesics];
Hennig CQG(16)-a1601 [new vacuum and electrovacuum solutions];
> s.a. numerical relativity [spectral evolution].
Singularity > s.a. types of singularities.
* Result: All classical
vacuum Gowdy solutions have a singularity.
* Cosmic censorship:
Reduce to harmonic map, use behavior of Bel-Robinson tensor.
* Polarized case: Strong
cosmic censorship, long time existence and inextendibility, proved; The
behavior near the singularity is asymptotically velocity-term dominated.
* Unpolarized case: Same
behavior near the singularity found by Berger & Moncrief, but Hern &
Stewart disagree.
@ Polarized: Moncrief (81);
Moncrief et al; Chruściel et al CQG(90).
@ Cosmic censorship: Ringström AM(09) [proof of strong cosmic censorship in T3 Gowdy spacetimes];
LRR(10) [rev].
@ Behavior near singularity:
Isenberg & Moncrief AP(90) [polarized];
Berger & Moncrief PRD(93),
Hern & Stewart CQG(98)gq/97 [unpolarized];
Berger et al gq/97;
Berger & Garfinkle PRD(98)gq/97 [on T3, support for AVTD];
Kichenassamy & Rendall CQG(98)-a1709,
Rendall CQG(00)gq [Fuchsian analysis];
Ståhl CQG(02)gq/01 [S2 × S1 and S3, Fuchsian];
Chae & Chruściel gq/03;
Ringström CQG(04).
@ Spikes near singularity: Rendall & Weaver CQG(01)gq;
Garfinkle & Weaver PRD(03);
Garfinkle CQG(04)gq.
Quantization > s.a. quantum-cosmology phenomenology.
@ General references: Berger AP(74);
Husain & Smolin NPB(89) [connection representation];
Corichi et al IJMPD(02)gq;
Torre PRD(02)gq;
Cortez & Mena PRD(05)gq [the unitarity issue];
Torre CQG(07)gq/06 [Schrödinger representation].
@ 3-torus topology: Mena PRD(97)gq [connection representation];
Pierri IJMPD(02)gq/01 [polarized];
Corichi et al PRD(06)gq/05,
PRD(06)gq,
CQG(06)gq,
PRD(07)-a0710 [unitary evolution];
Cortez et al PRD(07)gq [uniqueness of Fock quantization].
@ With massless scalar field: Barbero et al CQG(08) [unitary evolution];
Martín-Benito et al PRD(11)-a1012 [in loop quantum cosmology].
@ In supergravity: Macías et al AIP(06)gq/05,
PRD(08)-a0801 [N = 1, T3 topology].
@ And singularity, ADM: Berger PLB(82), AP(84); Husain CQG(87).
@ Loop quantization: Banerjee & Date
CQG(08)-a0712,
CQG(08)-a0712;
Martín-Benito et al PRD(08)-a0804,
Mena & Martín-Benito IJMPA(09) [and Fock space];
Brizuela et al CQG(10)-a0902;
Garay et al PRD(10);
Martín-Benito et al PRD(10)-a1006 [vacuum],
JPCS(11)-a1012;
Brizuela et al PRD(11) [effective dynamics];
Martín-Benito et al CQG(14)-a1307 [approximation methods];
Martín de Blas et al a1509-proc and PRD(17)- a1706;
> s.a. Covariance.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 6 feb 2018