Quantum Field Theory – Types of Fields  

In General > s.a. quantum gauge theories; tachyons; types of field theories.
* Higher-spin fields: At most two out of the three properties of unitarity, flat space, and non-trivial higher spin states can be satisfied; There is an incompatibility between pointlike localization and the Hilbert space formulation for interacting higher-spin fields; It can be resolved by passing to a Krein space setting, which leads to the BRST gauge formulation, or weakening the localization from pointlike to stringlike fields.
@ Massless fields: Lev TMP(04)ht/02 [massless particles]; Aste LMP(07)ht [self-coupling and mass resummation].
@ Other general types: Helfer ht/99, ht/99 [bosonic]; Jourjine a1306 [bi-spinors]; > s.a. clifford algebra.

Scalar Fields
@ λφ^4 theory: Frasca IJMPA(07)ht/06 [triviality]; Rivasseau AMP(09)-a0906 [zero-dimensional, pedagogical]; Klauder TMP(15)-a1405 [non-trivial quantization]; Jora a1503 [trivial for all values of the bare coupling constant λ]; > s.a. scalar field theories.
@ Other scalar field theories: Ho et al PRE(98)qp [open system]; Klauder a1005, JPA(11)-a1101 [divergence-free]; Cortez et al CQG(11)-a1106 [with time-dependent mass]; Cahill PRD(13)-a1212 [finite theories]; Ellis et al NPB(16)-a1512 [new prescription, 'complete normal order']; > s.a. approaches [PT-symmetric]; dirac quantum field theory [derivative coupling]; klein-gordon quantum fields; regularization; renormalization.
@ Finite temperature: Loran PLB(07)ht/06 [λφ4 on a circle]; Brandt et al PRD(08)-a0806 [gravity-like generalized φ3, thermal instability].
@ Polymer variables: Ashtekar et al CQG(03)gq/02 [and Fock]; Kamiński et al CQG(06)gq/05, CQG(06)gq; Hossain et al PRD(10)-a0906, PRD(09)-a0906 [massless, phenomenology]; Laddha & Varadarajan CQG(10)-a1001 [and classical limit]; Husain & Kreienbuehl PRD(10)-a1002 [ultraviolet behavior]; Hossain et al PRD(10)-a1007 [propagator]; Domagała et al a1210-proc [coupled to lqg]; Sengupta PRD(13)-a1306 [with non-degenerate vacuum]; Kajuri IJMPA(15)-a1406 [path-integral formulation, Lorentz symmetry violation]; Arzano & Letizia PRD(14)-a1408 [localization and diffusion]; Husain & Louko PRL(16)-a1508 [low-energy Lorentz violation]; Garcia-Chung & Vergara a1606 [equivalent to the Fock representation]; Varadarajan a1609 [ultralocality and propagation]; > s.a. 2D quantum gravity; fock space; FLRW quantum cosmology; klein-gordon fields; phenomenology of cosmological perturbations; Polymer Representation; thermodynamic systems.

Other Types of Fields
@ Spin, fermion fields: Nolland & Mansfield IJMPA(00) [fermions, Schrödinger representation]; Iliev ht/04 [spin-1/2, momentum picture]; Forte LNP(07)ht/05 [spin-statistics, path integrals, etc]; Kirillov & Savelova a0810 [instability from topology fluctuations]; Dvoeglazov JPCS(11)-a1008 [field operators and acausal solutions]; Trifonov JPA(12)-a1207 [non-linear fermions of degree n]; > s.a. dirac quantum field theory; ising model.
@ Vector fields: van Hees ht/03 [massive vector fields, renormalizability]; Djukanovic et al IJMPA(10)-a1001 [massive vector bosons, path integral]; Dvoeglazov JPCS(11)-a1008 [field operators and acausal solutions]; Silenko PRD(14)-a1404 [in a non-uniform magnetic field, Foldy-Wouthuysen Hamiltonian].
@ Spin-3/2 fields: Qiu et al IJGMP(06)ht [in Minkowski spacetime]; Savvidy a1005, a1111 [electromagnetic interactions]; Hack & Makedonski PLB(13)-a1106 [no-go result].
@ Spin-2 fields: Leclerc gq/06 [Faddeev-Jackiw quantization].
@ Theories of connections: Ashtekar et al JMP(95)gq; Bojowald & Kastrup CQG(00)ht/99 [symmetry reduction]; Lewandowski et al CMP(06) [uniqueness of representations]; Okołów CMP(09)gq/06 [diffeomorphism-invariant, non-compact G]; > s.a. QED; QCD.
@ Higher-spin fields: Mühlhoff a1103 [fermions in curved spacetimes]; Tóth EPJC(13)-a1209 [projection-operator approach]; Taronna PhD-a1210; Toth IJMPA(14)-a1309 [with reversed spin-statistics relation]; Grumiller et al JHEP(14)-a1403 [no-go result]; Schroer FP(15)-a1407 [Hilbert-space setting]; Rivasseau EPL(15)-a1507 [tensor field theories, asymptotic freedom]; > s.a. Weinberg-Witten Theorem.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 apr 2017