Low-Spin Field Theories  

Spin-0 Fields > see scalar field theories.

Spin-1/2 Fields > s.a. boundaries in field theory; dirac field theory; Fermions; green functions; spinors.
* Idea: Fermions, can be considered as a collection of 2-state oscillators; Descriptions include the Dirac equation and the Feshbach-Villars equation.
@ General references, classical fields: Gaioli & García Álvarez FP(98)ht; Deriglazov & Gitman MPLA(99)ht/98; Kochetov JPA(00) [in B]; Pestov ht/01; Ahluwalia a1305-wd [local, mass-dimension one, Fermi field of spin 1/2]; Andriambololona et al a1401 [derivation of field equations using dispersion-codispersion operators].
@ Related topics: Chamblin ht/97-ch [classification of fermions]; Mickelsson PLB(99)ht [with boundary]; McLenaghan et al PRS(00) [symmetries]; Guettou & Chetouani PS(06) [Feshbach-Villars equation and pair creation]; Malta et al AHEP(16)-a1510 [spin-dependent interaction potentials].

Spin-1 (Vector) Fields > s.a. electromagnetism; gauge theory; Kemmer Equation; types of dark energy.
* History: The correct massive wave equation was derived by Lanczos, and rediscovered by Proca in 1936.
@ General references: Mweene qp/99 [vectors and operators]; in Franklin 10 [IIb]; Malta et al AHEP(16)-a1510 [spin-dependent interaction potentials].
@ Massive: Proca CRAS(36); Gsponer & Hurni in(98)phy/05 [history]; Gazeau & Takook JMP(00) [quantum, on de Sitter space]; Arias & Pérez-Mosquera ht/04-conf [Cremmer-Scherk & Proca]; Zecca NCB(05) [in expanding universe]; Pani et al PRL(12)-a1209 [instabilities around rotating black holes]; Lee a1306-PhD [symmetries]; Dütsch RVMP(15)-a1501 [about their geometrical interpretation in terms of spontaneously broken gauge theories]; > s.a. electroweak theory [W bosons]; lagrangian systems.
@ In curved spacetime, cosmology: Zecca NCB(00) [on Schwarzschild spacetime], NCB(02) [with torsion]; Esposito-Farèse et al PRD(10)-a0912 [Hamiltonian stability and hyperbolicity]; Davydov AIP(12)-a1112; Tasinato et al JCAP(13)-a1307 [role in modified gravity theories].
@ Other backgrounds: Veko et al a1411-conf [in a Dirac magnetic monopole background]; Dernek et al a1606, Bera et al a1610 [3D].
> Quantum theories: see quantum field theory in curved spacetime; types of quantum field theories [non-local].

Spin-3/2 Fields > s.a. Fermions; quantum field theories in curved spacetimes.
* History: A theory was first formulated by Pauli & Fierz; The standard one is the simplified one, based on the Rarita-Schwinger equation, which is plagued by problems; Belinfante calculated the gyromagnetic ratio g = 2/3.
@ General references: Gupta PR(54); Robinson GRG(95); Kudrya TMP(95) [exact sets]; Frauendiener et al CQG(96) [m = 0]; Torres del Castillo & Herrera IJTP(96) [in Minkowski space]; Deser et al PRD(00)ht [Q, m ≠ 0]; Pascalutsa PLB(01)hp/00 [consistency]; Shima & Tsuda PLB(01) [Nambu-Goldstone fermion]; Villanueva et al FP(03) [electromagnetic coupling]; Kruglov IJMPA(06)ht/04 [as sqrt of Proca equation]; Napsuciale et al EPJA(06)hp; Darkhosh a0712-wd [massive, consistency, coupled to electromagnetism in supergravity]; Buchbinder & Krykhtin MPLA(10) [BRST approach to consistent Lagrangian]; Savvidy a1007 [quantum electrodynamics].
@ In curved spacetime, cosmology: Maroto & Mazumdar PRL(00)hp/99 [early universe]; Hayashi MPLA(01)ht [twistors, torsion]; Zecca IJTP(07) [in Schwarzschild spacetime]; Red'kov a1109-ch; Zecca IJTP(12) [in LTB models]; Liu et al JHEP(14)-a1401 [rev]; > s.a. green functions.
@ Related topics: Gsponer & Hurni HJ(03)mp/02 [Lanczos quaternion approach]; Carballo Perez & Socolovsky IJTP(12)-a1001 [CPT group]; > s.a. Gyromagnetic Ratio.
> Special types: see Rarita-Schwinger Theory; supergravity; twistors; types of gauge theories.

Other Types of Fields > see spin-2 fields; high-spin field theories; types of field theories.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 16 nov 2016