Defects |

**In General** > s.a. topological defects.

@ __General references__: Mazenko 02 [fluctuations, order];
Manko et al PhyA(04) [local states];
Afonso et al PLB(08)-a0710 [building networks of defects];
Grigorio et al PLB(10)-a0908 [dual approaches to effective theory of condensation];
Epstein & Segev a1305-conf [unified geometric treatment].

@ __In condensed matter physics__: Mermin RMP(79) [and homotopy];
Nelson 02 [r PT(03)may];
Cancès et al CMP(08)
[electrons, mean-field model];
Alexander et al RMP(12) [in nematic liquid crystals];
Tuomisto & Makkonen RMP(13) [identification in semiconductors with positron annihilation];
Freysoldt et al RMP(14) [point defects, first-principles calculations];
Schecter & Kamenev PRL(14) [phonon-mediated interactions between defects in quantum liquids];
Kamien & Mosna NJP(16)-a1510 [in smectic liquid crystals, topological structure of the defects];
> s.a. carbon [in graphene]; Elasticity;
gauge theories; Impurities; ising
models.

@ __In various types of field theories__: Bazeia ht/05-ln [scalar field theory];
Caudrelier IJGMP(08)-a0704 [integrable field theories];
Fuchs et al NPB(11)-a1007 [rational conformal field theory, classifying algebra for defects];
Klinkhamer & Rahmede PRD(14)-a1303 [in Skyrme model, non-singular, with non-trivial spacetime topology];
Balasubramanian JHEP(14)-a1404 [codimension-2 defects in 4D, *N* = 2 SCFTs].

@ __Dislocations, disclinations__: Katanaev PU(05)cm/04-ln [Riemann-Cartan framework];
Comer & Sharipov mp/05 [differential equations and differential geometry];
Kleman & Friedel RMP(08) [rev];
Van Goethem & Dupret a1003 [mesoscale, geometric distributional approach];
Christodoulou & Kaelin ATMP-a1212 [dynamics of a crystalline solid with a continuous distribution of dislocations];
Malyshev a1612-MG13
[Einstein-like Lagrangian geometrical field theory];
> s.a. Extended Objects; Fractons;
Plasticity; types of lorentzian geometries.

**And Spacetime Curvature / Torsion**

* __Spacetime defects__:
A distribution of topological defects embedded in a classical spacetime is
one possible way to model the effects of a quantum spacetime structure.

@ __References__: Maluf & Goya CQG(01)gq [and teleparallelism];
Schmidt & Kohler GRG(01)gq [simplicial, Regge calculus];
Kleinert BJP(04)-proc;
Tartaglia IJMPA(05)gq/04-proc;
Kleman a0905 [matter as condensed-matter-type defects];
Radicella & Tartaglia AIP(10)-a0911 ["cosmic defect theory"];
Kleman a1204
[classification of 2D defects of a 4D maximally-symmetric spacetime];
Bennett et al IJMPA(13)-a1209 [and Plebański's theory of gravity];
Hossenfelder PRD(13)-a1309,
PRD(13)-a1309,
AHEP(14)-a1401 [and phenomenology];
Arzano & Trzesniewski AHEP(17)-a1412 [energy-momentum and group momentum space];
Hossenfelder & Gallego CQG(18)-a1709 [modification of general relativity with local space-time defects, and FLRW models];
> s.a. einstein-cartan theory.

@ __Types, examples of spacetime defects__:
Randono & Hughes PRL(11)-a1010 [torsional monopoles];
Klinkhamer PRD(14)-a1402 [non-singular, Skyrmion-type defect];
Klinkhamer & Sorba JMP(14)-a1404 [defects which are homeomorphic but not diffeomorphic];
Brunner et al CMP(15)-a1404 [discrete torsion defects];
Klinkhamer a1811-conf [soliton-type];
> s.a. geons; Skyrmions.

> __And quantum gravity__: see approaches
to quantum gravity; photon phenomenology in quantum gravity;
types of quantum spacetime.

> __Related effects__: see examples
of entangled systems; lensing; particle
models; quantum-field-theory effects; spin;
wave propagation.

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 31 jan 2019