In General > s.a. topological defects.
@ General references: Mazenko 02 [fluctuations, order]; Manko et al PhyA(04) [local states]; Afonso et al PLB(08)-a0710 [building networks of defects]; Grigorio et al PLB(10)-a0908 [dual approaches to effective theory of condensation]; Epstein & Segev a1305-conf [unified geometric treatment]; Epstein a1912 [approaches].
@ In condensed matter physics: Mermin RMP(79) [and homotopy]; Nelson 02 [r PT(03)may]; Cancès et al CMP(08) [electrons, mean-field model]; Alexander et al RMP(12) [in nematic liquid crystals]; Tuomisto & Makkonen RMP(13) [identification in semiconductors with positron annihilation]; Freysoldt et al RMP(14) [point defects, first-principles calculations]; Schecter & Kamenev PRL(14) [phonon-mediated interactions between defects in quantum liquids]; Kamien & Mosna NJP(16)-a1510 [in smectic liquid crystals, topological structure of the defects]; > s.a. carbon [in graphene]; Elasticity; gauge theories; Impurities; ising models.
@ In various types of field theories: Bazeia ht/05-ln [scalar field theory]; Caudrelier IJGMP(08)-a0704 [integrable field theories]; Fuchs et al NPB(11)-a1007 [rational conformal field theory, classifying algebra for defects]; Klinkhamer & Rahmede PRD(14)-a1303 [in Skyrme model, non-singular, with non-trivial spacetime topology]; Balasubramanian JHEP(14)-a1404 [codimension-2 defects in 4D, N = 2 SCFTs].
@ Dislocations, disclinations: Katanaev PU(05)cm/04-ln [Riemann-Cartan framework]; Comer & Sharipov mp/05 [differential equations and differential geometry]; Kleman & Friedel RMP(08) [rev]; Van Goethem & Dupret a1003 [mesoscale, geometric distributional approach]; Christodoulou & Kaelin ATMP-a1212 [dynamics of a crystalline solid with a continuous distribution of dislocations]; Malyshev a1612-MG13 [Einstein-like Lagrangian geometrical field theory]; Katanaev & Volkov a1908 [Chern-Simons theory]; > s.a. Extended Objects; Fractons; Plasticity; types of lorentzian geometries.

And Spacetime Curvature / Torsion
* Spacetime defects: A distribution of topological defects embedded in a classical spacetime is one possible way to model the effects of a quantum spacetime structure.
@ References: Maluf & Goya CQG(01)gq [and teleparallelism]; Schmidt & Kohler GRG(01)gq [simplicial, Regge calculus]; Kleinert BJP(04)-proc; Tartaglia IJMPA(05)gq/04-proc; Kleman a0905 [matter as condensed-matter-type defects]; Radicella & Tartaglia AIP(10)-a0911 ["cosmic defect theory"]; Kleman a1204 [classification of 2D defects of a 4D maximally-symmetric spacetime]; Bennett et al IJMPA(13)-a1209 [and Plebański's theory of gravity]; Hossenfelder PRD(13)-a1309, PRD(13)-a1309, AHEP(14)-a1401 [and phenomenology]; Arzano & Trzesniewski AHEP(17)-a1412 [energy-momentum and group momentum space]; Hossenfelder & Gallego Torromé CQG(18)-a1709 [modification of general relativity with local space-time defects, and FLRW models]; > s.a. einstein-cartan theory.
@ Types, examples of spacetime defects: Randono & Hughes PRL(11)-a1010 [torsional monopoles]; Klinkhamer PRD(14)-a1402 [non-singular, Skyrmion-type defect]; Klinkhamer & Sorba JMP(14)-a1404 [defects which are homeomorphic but not diffeomorphic]; Brunner et al CMP(15)-a1404 [discrete torsion defects]; Klinkhamer JPCS(19)-a1811 [soliton-type]; Queiruga a1912 [non-metricity and spacetime foam]; > s.a. geons; Skyrmions.
> And quantum gravity: see approaches to quantum gravity; photon phenomenology in quantum gravity; types of quantum spacetime.
> Related effects: see examples of entangled systems; lensing; particle models; quantum-field-theory effects; spin; wave propagation.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 26 dec 2020