|  Acceleration Radiation | 
Bremsstrahlung
  > s.a. electromagnetism; particle
  effects; Stückelberg Mechanics.
  * Idea: Radiation emitted by an
    accelerated electric charge.
  * Fields: If one solves the wave
    equation in terms of advanced and retarded radiation fields, one can separate
AC:= \(1\over2\)(Areta + Aadva) , AR:= \(1\over2\)(Areta − Aadva) ;
    The first one produces the Coulomb field, the second one is responsible for radiation reaction.
  * Larmor equation: The rate of energy
    loss for an accelerated non-relativistic charged particle is \({\rm d}E/{\rm d}t
    = 2q^2({\rm d}v/{\rm d}t)^2/3c^3\).
  * Examples: Synchrotron radiation.
  * Issue in curved spacetime: When
    a charge is in free fall in a gravitational field, does it radiate or not? The
    answer is that a local detector, falling with it, would not detect radiation,
    but a distant one not falling with it would.
  @ General references: Holstein & Swift AJP(81)apr [elementary derivation];
    Alexander & Gerlach PRD(91)gq/99;
    Nakel PRP(94);
    Matsas PLB(96)gq [Rindler space];
    Chubykalo & Vlaev IJMPA(99)phy/98;
    Harpaz  & Soker GRG(98)gq,
    FP(01);
    Napolitano & Ragusa AJP(99)nov [arbitrary motion];
    Leinaas ht/98 [electrons];
    Shariati & Khorrami FPL(99)gq/00 [and the equivalence principle];
    Peña et al PRD(05) [accelerated observers];
    Huang & Lu FP(08) [exact expression];
    Glass GRG(08) [rev];
    Marino JPA(08) [non-radiating motions];
    James et al PRE(11)-a1007 ['endpoint' formulation];
    Iso et al PRD(11)-a1011 [and Unruh radiation];
    Andersen et al PRL(12) [photon formation length];
    Leonov EJP(12);
    Landulfo et al a1709 [classical and quantum, Larmor and Unruh].
  @ Larmor formula: in Eyges 72;
    Ford & O'Connell PLA(91) [modification];
    Cardoso et al PRD(07)ht [in higher dimensions];
    Higuchi & Walker PRD(09)-a0908 [quantum corrections, scalar electrodynamics].
  @ Uniformly accelerated charge:
    Fulton & Rohrlich AP(60);
    Singal GRG(95),
    GRG(97)
      [no radiation! – contrary to Parrott GRG(97)gq and consensus];
    Parrott FP(02)gq/93 [and equivalence principle];
    Almeida & Saa AJP(06)feb [and comoving observers];
    Rowland EJP(10) [and Schott energy].
  @ Synchrotron radiation: Unruh PRP(98)ht [in electron frame];
    Aloisio & Blasi APP(02)ap,
    APP(02)ap;
    Margaritondo et al RNC(04) [applications];
    Hannay & Jeffrey PRS(05) [electric field];
    Athanasiou et al PRD(10)
    + Karch Phy(10) [from single quarks].
  @ Extremely relativistic: Gerlach FP(03)gq;
    Cardoso et al PRD(03)gq;
    > s.a. scattering.
Other Mechanisms and Related Topics
  > s.a. unruh effect \ radiation.
  * Freely falling particle in a gravitational field:
    An observer falling freely with the particle will not observe radiated electromagnetic waves,
    but an observer with respect to whom the particle is accelerating will observe radiation.
  @ Other mechanisms: Iso et al PRD(17)-a1704 [entanglement-induced quantum radiation].
  @ In curved spacetime: DeWitt & DeWitt Phys(64);
    Matsas GRG(94);
    Parrott gq/93 [conformally flat spacetime],
    GRG(97)gq;
    Higuchi et al PRD(97)gq/96,
    Harpaz & Soker GRG(04)phy/99 [static q];
    Akhmedov et al PRD(10)-a1006 [free fall in de Sitter spacetime];
    Grøn AJP-a1003
      [energy conservation and Schott energy];
    Unnikrishnan & Gillies IJMPD(14)-a1408 [remarks];
    > s.a. quantum field theory effects in curved spacetime.
  @ Accelerating dipole:
    Power & Thirunamachandran PRS(01),
    PRS(01);
    Gerlach PRD(01) [violent acceleration].
  @ Accelerated oscillator: Raine et al PRS(91);
    Kim & Kim PRD(97);
    Kim PRD(99)gq/98 [in scalar quantum field theory vacuum].
  @ And self-force:
    Hirayama & Hara PTP(00)gq/99;
    Burko AJP(00)may-gq/99.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 15 may 2021