|  Neutrinos – Search, Detection and Applications | 
In General > s.a. astrophysical and cosmological neutrinos;
  gravitational-wave detection; types of neutrinos
  [species, sterile neutrinos].
  * Detection: 2010, Only two
    astrophysical sources have actually been seen so far, the Sun and SN1987A.
  * Motivation: Neutrinos are a unique
    source of information on deep processes inside stars and galaxies; Neutrinos are
    not affected by processes that stop other particles, and in their spectrum there
    are no "walls" (like the electromagnetic ones at about \(10^9\) eV from
    γs producing \(e^+ e^-\) pairs off the cmb, and a similar one for
    cosmic-ray \(p+\gamma\) into hadrons at about \(5\times10^{19}\) eV).
  * Method: Telescopes based
    on Cerenkov radiation from events in the detector mass; Need huge detectors
    (low event rates), located deep below the surface (large backgrounds); Use
    mines, ocean water, antarctic ice; The challenge is to lower the detection
    threshold below 1019 eV.
  * Experiments: 1999, AMANDA
    (Antarctic Muon and Neutrino Detector Array), NESTOR, Baikal, ANTARES, Super-Kamiokande;
    NuBe (Neutrino Burster Experiment); IceCube; 2004, ANITA-lite prototype flight; 2016, SHiP,
    an experiment at SPS to search for sterile neutrinos to be built by 2026.
  @ Reviews: Grupen ap/96-conf;
    Protheroe EPN-ap/99;
    Bahcall & Davis PASP(00)ap/99 [history];
    Halzen NPPS(04)ap;
    news sr(06)nov [Antarctic];
    Becker JPCS(08)-a0811;
    Montaruli NPPS(09)-a0901;
    Halzen a0911-conf;
    Anchordoqui & Montaruli ARNPS(10)-a0912;
    Gelmini et al SA(10)may [neutrino astronomy];
    Kappes a1110-proc;
    Karle NPPS(13)-a1210 [future experiments];
    Kurahashi et IceCube a1402-proc.
  @ Diffuse flux: Kowalski JCAP(05)ap;
    Kravchenko et al PRD(06) [RICE];
    Abbasi et IceCube PRD(11).
  @ Experiments: Letessier-Selvon NPPS(03)ap/02 [Pierre Auger];
    Spiering PS(05)ap-in [Amanda, Baikal, IceCube];
    Chen et SNO NPPS(05);
    Inoue et KamLAND NPPS(05);
    Wischnewski et al IJMPA(05)ap-proc [Baikal];
    Wischnewski a0710-conf,
    a0710-conf [Baikal];
    news pw(14)mar [future JUNO (Jiangmen Underground Neutrino Observatory) detector];
    news pw(16)feb [future SHiP (Search for Hidden Particles) SPS experiment approved];
    Aguilar-Arevalo et MiniBooNE PRL(18) [fixed-energy neutrino beam];
    Fiorillo et al JCAP(21)-a2012 [IceCube constraints on equivalence principle violations];
    news sn(21)may [first evidence for neutrino interactions at the LHC].
  @ Ice detectors: Hulth et IceCube ap/06-conf [AMANDA to IceCube];
    Barwick et al PRL(06) [flux results from ANITA-lite];
    Barwick JPCS(07)ap/06 [ARIANNA].
  @ Mediterranean underwater detectors:
    Amore et al IJMPA(07) [NEMO project];
    Cuoco et al JCAP(07)ap/06 [km3 detector];
    Hernández-Rey JPCS(09)-a0904;
    Margiotta et KM3NeT NIMA(14)-a1408 [KM3NeT, under construction].
  @ Acoustic detection: Nahnhauer NIMA(11)-a1010-proc;
    Vandenbroucke PhD(09)-a1201.
  @  Other detectors / experiments:
    news pt(17)aug [portable detectors];
    > s.a. AMANDA; ANTARES;
      IceCube; Super-Kamiokande.
Solar Neutrinos
  > s.a. neutrino mixing; solar planets;
  solar system [helioseismology]; types of
  neutrinos [geoneutrinos].
  * Problem: Only about 1/3
    of the expected solar neutrinos are detected; It was solved by neutrino
    oscillations, as confirmed in 2002.
  * Experiments:
    (1) R Davis et al since the 1960s monitor the amount of Ar in C\(_2\)Cl\(_4\);
    Sensitive only to left-handed νes;
    (2) Kamiokande II since 1987, higher threshold, neutrinos from the same reaction, can see
    other flavors; (3) SAGE collaboration at Baksan, with Ga \(\mapsto\) Ge;
    (4) Gallex collaboration at Gran Sasso, start end of 1990; (5) Sudbury, ON.
  * Oscillations: The effective m
    depends on matter density, and in the Sun's core the masses are much higher than usual,
    especially for νes which interact
    more with matter; Mostly νes are
    produced, but their mass decreases traveling outwards, and, since the graphs of mass vs
    density for the two νs cannot cross (second-order perturbation theory), most
    of the neutrinos come out as νμs,
    which are not seen by the ordinary experiments.
  @ Status, reviews: Bahcall SA(69)may;
    Pinch 86 [constructivist history];
    Wolfenstein & Beier PT(89)jul;
    Schwarzschild PT(90)oct;
    Sciama Nat(90)dec,
    PRL(90);
    Bahcall SA(90)may,
    in(98)ap/97-ln,
    he/00-conf;
    Parke PRL(95);
    Dar & Shaviv PRP(99)ap/98;
    Fiorentini & Ricci ap/98-proc;
    Pennicott pw(01)jul [solution];
    Miramonti & Reseghetti RNC(02);
    Smy MPLA(02);
    Bahcall IJMPA(02);
    McDonald et al SA(03)apr [solution];
    Bahcall  & Pinsonneault PRL(04)ap;
    Bahcall phy/04-in,
    in(05)phy/04 [I],
    et al JHEP(04)hp;
    Nakahata & Super-K NPPS(05);
    Turck-Chièze NPPS(05);
    Waxman Sci(07)ap/06;
    Peña-Garay & Serenelli a0811 [and solar composition problem];
    Chavarria a1201-proc;
    Antonelli et al AHEP-a1208;
    Haxton et al ARAA(13)-a1208 [status and prospects];
    Antonelli & Miramonti a1311-conf.
  @ Oscillations: Mikheyev & Smirnov SJNP(85);
    Bethe PRL(86);
    Ahmed et SNO PRL(04)ne/02,
    ne/03-proc [evidence].
  @ Related topics: Bellini et al PRL(12)
    + news pw(12)feb
      [neutrinos from solar proton-electron-proton fusion reactions].
Applications of Neutrinos
  @ References:
    Sugawara et al hp/03 [use to destroy nuclear weapons?];
    Huber PLB(10),
    news PhysOrg(12)mar [communication];
    news wvtf(14)aug [monitoring nuclear reactors];
    Luciano & Petruzziello a2007 [testing gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2021