|  Phenomenology of Black-Hole Radiation | 
Effects / Properties of Evaporating Black Holes and Emitted Radiation
  > s.a. black holes and information; entropy bounds [hyperentropic].
  * Nature of radiation:
    Quanta of all fields that couple to the geometry and to any charges the black
    hole may have are radiated; In 4D, for T greater than all particle
    masses, and using standard model parameters, Page estimated that 1.8% of the energy
    is radiated in scalar particles, 88% in fermions, 9.8% in vectors, and 0.1% in
    gravitons; In higher dimensions, the gravitational contribution increases.
  * Spectrum: Various authors have
    proposed that it is not exactly thermal, due to (i) Frequency-dependent greybody
    factors in the potential barrier, (ii) Dynamical nature of black-hole background and
    energy conservation, back-reaction, in the tunneling approach, or (iii) Quantum correlations.
  @ Properties of evaporating black holes:
    Lesourd a1808 [causal structure].
  @ Rates and spectra: Page PRD(76),
    PRD(76);
    Page & Hawking AJ(76);
    Daghigh & Lapusta PRD(06) [microscopic black holes, p and anti-p];
    Boonserm & Visser PRD(08)-a0806 [bounds on greybody factors];
    Greenwood & Stojković JHEP(09) [as seen by infalling observers];
    Gray et al CQG(16)-a1506 [average flux];
    Arbey & Auffinger a1905 [numerical, BlackHawk];
    > s.a. Greybody Factor.
  @ Stimulated emission:
    Bekenstein & Meisels PRD(77);
    Panangaden  & Wald PRD(77).
  @ Entropy, density matrix: Bekenstein PRD(75);
    Kundt Nat(76)jan;
    Page JCAP(13)-a1301 [time dependence];
    Alberte et al JHEP(15)-a1502 [in different models for radiation];
    Alonso-Serrano & Visser a1512 [entropy/information flux];
    Almheiri et al a2006.
  @ Back-reaction: Balbinot CQG(84);
    York in(84);
    Balbinot & Barletta CQG(89);
    Kraus PhD(95)gq;
    Zaidi & Gegenberg PRD(98)gq/97;
    Massar & Parentani gq/98,
    NPB(00)gq/99;
    Hu et al in(98)gq/99;
    Fabbri et al GRG(01)gq/01,
    NPB(02)ht/01 [and information paradox];
    Ring ht/05 [evaporation rate suppression];
    Vilkovisky PLB(06);
    Maia & Schützhold PRD(07) [toy model];
    Taves & Kunstatter PRD(14)-a1408 [non-singular (quantum corrected) model];
    Chowdhury & Krauss a1409/PRL [and black-hole formation, horizon];
    Mersini-Houghton & Pfeiffer a1409 [fireworks instead of firewalls].
  @ Related topics: Bianchi & Smerlak GRG(14)-a1405 [last gasp, negative energy burst];
    Ellis et al PRD(14)-a1407 [consequences, in a cosmological context];
    Düztaş & Semiz GRG(16)-a1508 [evaporation as a cosmic censor];
    Smith & Mann CQG(14)
    & CQG+(14) [and black-hole internal topological structure];
    > s.a. black holes and information [endpoint, remnant]; black-hole types;
      dark-energy models; entanglement;
      equivalence principle; gravitational instantons.
Different Approaches and Situations
  > s.a. black holes in higher dimensions and modified
  theories [2D]; horizons [universal]; kerr-newman solutions.
  @ And path-integral quantum gravity:
    Hartle & Hawking PRD(76);
    York & Schmekel PRD(05).
  @ And loop quantum gravity: Ashtekar & Bojowald CQG(05)gq [dynamical horizons];
    Díaz-Polo & Fernández-Borja CQG(08)-a0706 [isolated horizons].
  @ Tunneling approach: Berezin et al G&C(99)gq/06;
    Parikh & Wilczek PRL(00)ht/99;
    Parikh GRG(04)ht-GRF;
    Angheben et al JHEP(05) [extremal and rotating];
    Medved & Vagenas MPLA(05)gq;
    Arzano et al JHEP(05)ht;
    Liu gq/05;
    Jiang et al PRD(06)ht/05 [rotating];
    Ren et al GRG(06) [with topological defects];
    Hu et al gq/06 [and laws of black-hole dynamics];
    Kerner & Mann PRD(06)gq [Taub-NUT];
    Wu & Jiang JHEP(06) [BTZ black holes];
    Pilling PLB(08)-a0709 [and the first law];
    Banerjee & Majhi JHEP(08) [beyond the semiclassical approximation];
    Stotyn et al CQG(09)-a0811 [coordinate-free formulation];
    Yale PLB(11)-a1012 [scalars, fermions and bosons];
    Vanzo et al CQG(11) [rev];
    Torres et al PLB(13)-a1308;
    > s.a. thermodynamics of specific solutions [Reissner-Nordström].
  @ Collapsing object: Greenwood et al JCAP(11)-a1011 [collapsing shell];
    Saini & Stojković PRL(15)-a1503 [radiation process is unitary];
    Kawai & Yokokura PRD(16)-a1509 [matter shell collapsing on an evaporating black hole].
  @ Computational: Corley & Jacobson PRD(98)ht/97 [lattice];
    Arraut EPL(18)-a1901 [neural networks];
    Auffinger & Arbey a2012-proc [BlackHawk code]. 
  @ Other derivations / models:
    Gerlach PRD(76) [incipient black hole];
    Lapedes PRD(78) [euclidean formalism];
    Kraus & Wilczek MPLA(94);
    Parentani & Piran PRL(94)ht;
    Scardigli NCB(95)gq/02;
    Visser IJMPD(03)ht/01 [essential features];
    Melnikov & Weinstein ht/01,
    Weinstein NPPS(02)gq/01,
    ht/02-conf [Hamiltonian];
    Canfora & Vilasi gq/03 [and trace anomaly];
    Kiefer CQG(04)gq [and quasi-normal modes];
    Yu & Zhang PRD(08)-a0806 [as open quantum system];
    Peltola CQG(09)-a0807 [local approach];
    Bhattacharya CQG(10)-a0911 [complex path analysis];
    Gillani et al JCAP(11) [accelerating and rotating black holes];
    Smerlak & Singh PRD(13)-a1304;
    Pejhan & Rahbardehghan IJMPA(16)-a1408 [Krein quantization approach];
    Senovilla & Torres CQG(15)-a1409 [from marginally trapped surfaces];
    Israel a1504 [Boulware accretion as alternative scenario];
    Robertson & Parentani PRD(15)-a1506 [dissipative field theories].
  @ Gravitational anomalies approach:
    Robinson & Wilczek PRL(05)gq;
    Das et al IJMPD(08)-a0705;
    Chen & He CQG(08)-a0705;
    Banerjee & Kulkarni PRD(08)-a0707;
    Peng & Wu a0708-wd [counterexample];
    Wu et al CQG(08)-a0803;
    Akhmedova et al PLB(09)-a0808 [comment];
    Banerjee IJMPD(09)-a0807 [GRF];
    Morita PLB(09) [2D conformal field theory method];
    Li et al CQG(10)-a1005 [fermions and 3D black holes];
    > s.a. black-hole analogs; equivalence principle [violation].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 29 dec 2020