Asymptotic Safety in Quantum Gravity |
In General > s.a. non-renormalizable theories;
renormalization of quantum gravity.
* Idea: Quantum gravity with a
cosmological constant has a non-Gaussian UV fixed point; The first-order, tetrad
+ connection form also has one, probably inequivalent to the metric gravity one.
* Underlying physical mechanism:
(Nink & Reuter 2012) The inverse propagator for metric fluctuations contains
two pieces, a covariant Laplacian and a curvature-dependent potential term; These
can be interpreted, respectively, as diamagnetic and paramagnetic-type interactions
of the metric fluctuations of spacetime, considered as a polarizable medium, with
the background gravitational field.
@ Reviews: Niedermaier CQG(07)gq/06;
Niedermaier & Reuter LRR(06);
Percacci in(09)-a0709 [rev];
Litim PoS-a0810;
Percacci a1110-proc [short introduction];
Reuter & Saueressig NJP(12)-a1202 [pedagogical introduction];
Reuter & Saueressig LNP(12)-a1205 [and possible multifractal structure];
Ambjørn et al NJP(12) [focus issue];
Eichhorn a1709-proc,
a1810-Front;
Bonanno et al a2004
[critical reflection on the state of the art];
Eichhorn a2003-proc.
@ General references: Weinberg in(79);
Souma PTP(99)ht,
gq/00;
Lauscher & Reuter PRD(02)ht/01,
CQG(02)ht/01,
IJMPA(02)ht/01;
Litim PRL(04)ht/03 [Euclidean, arbitrary dimension];
Percacci PRD(06)ht/05;
Emoto gq/06-conf;
Ward MPLA(08)-a0808
[predictions for G and Λ, resummation techniques];
Niedermaier PRL(09),
NPB(10) [from perturbation theory];
Daum & Reuter PLB(12)-a1012 [using the Holst action];
Manrique et al PRL(11)-a1102 [Lorentzian];
Benedetti NJP(12)-a1107 [on shell];
Litim & Satz a1205 [limit cycles];
Nink & Reuter JHEP(13)-a1208,
IJMPD(13)-a1212-MG13 [underlying physical mechanism];
Benedetti EPL(13)-a1301 [number of relevant operators];
Falls et al JHEP(16)-a1410 [strong support for the conjecture];
Biemans et al PRD(17)-a1609;
Falls et al PRD(19)-a1810;
Slade a1812-PhD;
Saueressig et al a1901 [scales and hierachies];
Becker & Pagani PRD(19)-a1810 [geometric operators];
Donoghue FrPh(20)-a1911 [critique].
@ Renormalization group: Percacci & Perini CQG(04)ht [fixed point];
Codello et al AP(09) [Wilsonian renormalization group equation];
Christiansen et al a1209 [and fixed points];
Falls a1503 [scaling behaviour];
Pereira a1904-proc [and tensor models, coarse-graining];
Falls et al PLB(20)-a2004 [dimension of the critical surface].
@ Formalism, techniques:
Gionti a1805-proc [Hamiltonian formalism];
Moti & Shojai PLB(19)-a1812 [new cutoff identification and improvement];
Knorr et al CQG(19)-a1907 [computational toolbox, Mathematica notebooks];
Kwapisz & Meissner NPB(21)-a2005 [and amplitudes];
Pawlowski & Reichert a2007 [fluctuation approach].
@ Related topics: Reuter & Weyer PRD(09)-a0804 [and diffeomorphism invariance];
Reuter & Weyer GRG(09)-a0903-conf [role of background independence];
Benedetti et al AIP(09)-a0909 [role of higher-derivative terms];
Manrique et al AP(11)-a1005 [bimetric renormalization-group flow];
Falls JHEP(16)-a1408 [and the cosmological constant];
Nink a1701-PhD
[background independence and unitarity, and the 2D case];
Houthoff et al EPJC(17)-a1705 [ADM formulation on a background spacetime with topology
S1 × Sd];
Einhorn & Jones PRD(17)-a1710 [asymptotic freedom];
Knorr a2104 [derivative expansion];
> s.a. UV Completion.
Matter and Other Gravity Theories
> s.a. approaches to quantum gravity; dynamical triangulations and
causal dynamical triangulations; fractal spacetime.
* With matter: The existence of
non-Gaussian renormalization group fixed points is rather generic; In particular,
the matter content of the standard model and its most common extensions gives
rise to one non-Gaussian fixed point with real critical exponents suitable for
Asymptotic Safety, and there are non-Gaussian fixed points for any number of
scalar matter fields.
@ With other variables:
Daum & Reuter a1111-proc,
AP(13)
[vielbein and spin-connection variables, running Immirzi parameter];
Harst & Reuter JHEP(12)-a1203 [tetrad-only gravity];
Harst & Reuter PLB(15)-a1509
[with selfdual/anti-selfdual spin-connection, likely asymptotically safe].
@ With scalar fields: Percacci & Perini PRD(03)ht;
Henz et al PLB(13)-a1304 [dilaton];
Donà et al PRD(14) [compatibility of minimally-coupled matter];
Donà et al PRD(16)-a1512;
Christiansen et al PRD(18)-a1710;
Eichhorn et al SPP(18)-a1804 [universality];
Eichhorn & Held a1907-proc [and particle physics].
@ With fermion fields:
Vacca & Zanusso PRL(10)-a1009 [and scalar];
Meibohm et al PRD(16)-a1510 [and scalar];
Meibohm & Pawlowski EPJC(16)-a1601 [chiral];
Biemans et al JHEP(17)-a1702 [minimally coupled scalar, vector, and Dirac fields, ADM formalism];
Eichhorn et al PRD(19)-a1812;
Daas et al PLB(20)-a2005.
@ With other fields: Eichhorn et al PLB(19)-a1810
[near-perturbative completion of the Standard Model with gravity].
@ Higher-order gravity: Codello & Percacci PRL(06)ht,
Codello et al IJMPA(07)-a0705 [f(R) gravity];
Benedetti et al MPLA(09)-a0901;
Ohta CQG(12)-a1205 [higher-derivative gravity];
Ohta & Percacci CQG(14)-a1308 [in various dimensions];
González-Martín et al PRD(17)-a1704 [asymptotic solutions];
Einhorn & Jones PRD(17)-a1710 [quadratic, without ghosts or tachyons];
Falls et al PRD(18)-a1801;
Alkofer & Saueressig AP(18)-a1802 [f(R) gravity coupled to matter].
@ Other theories: Fischer & Litim PLB(06)ht,
Litim AIP(06)ht [D > 4];
Reuter & Weyer PRD(09)-a0801 [conformally reduced gravity];
Cai & Easson PRD(12) [effective scalar-tensor theory];
Eichhorn et al JHEP(20)-a1909 [grand-unified extension];
> s.a. deformed special relativity; hořava
gravity [candidate UV completion]; unimodular quantum gravity.
Phenomenology > s.a. black-hole quasinormal modes;
dark energy; quantum-gravity effects
on geometry [collapse] and particle properties.
@ General references: Litim PTRS(11)-a1102 [applications];
Bonanno PRD(12)-a1203 [effective action, early-universe implications];
Eichhorn et al PRD(18)-a1710 [viability test];
Platania a2003-FiP [rev, antiscreening in cosmology].
@ Matter properties and interactions:
Hewett & Rizzo JHEP(07)-a0707,
Litim & Plehn PRL(08)-a0707 [collider signals];
Döbrich & Eichhorn JHEP(12)-a1203,
Eichhorn a1210-MG13 [photon-photon scattering];
Eichhorn PRD(12) [scalar field self-interactions];
Bosma et al PRL(19)-a1904 [graviton propagator and Newtonian potential];
de Brito et al JHEP(19)-a1907 [towards phenomenological tests].
@ Spacetime geometry: Reuter & Schwindt JPA(07)ht/06,
JHEP(07)
[scale-dependent metric and minimum length];
Manrique & Reuter AP(10)-a0907 [background metric];
Percacci & Vacca CQG(10)-a1008 [emergence and minimal length];
Kurov & Saueressig a2004 [characterizing the quantum geometry];
Zarikas & Kofinas JPCS(18)-a2006 [singularities];
> s.a. singularities in quantum gravity [avoidance].
@ Astrophysics and black holes:
Bonanno PoS-a0911 [astrophysical implications];
Becker & Reuter JHEP(12)-a1205,
a1212-MG13
[non-trivial boundaries, and black-hole thermodynamics];
Koch et al a1311-conf [black holes];
Koch & Saueressig CQG(14) [structural aspects],
IJMPA(14)-a1401 [rev];
Held et al JCAP(19)-a1904 [black-hole shadows].
@ Cosmology: Fang & Huang EPJC(13)-a1210 [trouble with asymptotically-safe inflation];
Bonanno & Saueressig CRP(17)-a1702 [rev];
Platania a1908-proc [cmb spectrum];
> s.a. dark energy.
> Related topics:
see fine-structure constant.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 26 apr 2021