Hartle-Hawking No-Boundary Quantum Cosmology |
In General
> s.a. cosmological-constant problem; quantum cosmology.
* Idea: Choose the set of histories C to
consist of Euclidean four-geometries with no past boundary (empty beginning and smooth fields) in
\(\Psi[g_{ij}, t, \phi]\):= ∫C \(\cal D\)gij \(\cal D\)φ exp{−I[gij, φ]} .
* Limitations: 1990, Thought
to give too little inflation (but see Grishchuk & Rozhansky).
* Susskind's challenge: The
Hartle-Hawking no-boundary proposal should most likely lead to a nearly empty
large de Sitter universe, rather than to early rapid inflation; Even if one
adds the condition of observers, they are most likely to form from quantum
fluctuations in de Sitter and therefore not see the structure that we observe.
@ General references:
Hartle & Hawking PRD(83);
Hawking NPB(84),
PS(87),
in(89);
Laflamme & Shellard PRD(87);
Louko CQG(88);
Barvinsky & Kamenshchik CQG(90);
Grishchuk & Rozhansky PLB(90) [and conditions for inflation];
Halliwell & Hartle PRD(90);
Wu 93;
Coule MPLA(95)gq/94 [and the cosmological constant];
Page JCAP(07)ht/06 [re Susskind's challenge];
Wu MPLA(11) [rev];
Feldbrugge et al PRL(17)-a1705 [semi-classical description untenable];
Feldbrugge et al PRD(18)-a1708 [problem];
Bojowald & Brahma PRL(18)-a1810
[proposal rescued by dynamical signature change in loop quantum cosmology];
Halliwell et al PRD(19)-a1812 [without functional integrals];
Di Tucci & Lehners PRL(19)-a1903 [as a path integral with Robin boundary conditions];
Alexander et al CQG(21)-a2012 [generalization beyond minisuperspace];
Partouche et al a2105 [gauge fixing and field redefinitions].
@ In Lorentzian quantum cosmology:
Diaz Dorronsoro et al PRD(17)-a1706;
Di Tucci et al PRD(19)-a1911.
@ And spacetime topology:
Wu PRD(85);
Gurzadyan & Kocharyan JETP(89);
Gibbons & Hartle PRD(90);
Gibbons CQG(98);
Anderson et al CQG(04)gq/03 [peaks from sum over topologies].
@ And spacetime anisotropy:
Hawking & Luttrell PLB(84);
Duncan & Jensen NPB(89);
Fujio & Futamase PRD(09)-a0906 [emergence of classical mixmaster universe];
> s.a. CMB anisotropies.
Specific Theories and Models
@ 2+1 gravity:
Carlip PRD(92) [approximations to action];
Carlip CQG(05)gq [real tunneling geometries].
@ In other theories: Kapetanakis et al NPB(95) [Einstein-Yang-Mills];
Csordás & Graham PLB(96) [supersymmetric];
Sarangi & Tye ht/06 [string cosmology];
Hawking & Hertog PRD(06)
+ pw(06)jun [and string landscape, top-down];
Hwang et al CQG(12)-a1107 [scalar-tensor gravity];
Sasaki et al CQG(13)-a1307 [massive gravity];
Battarra & Lehners JCAP(14)-a1407 [ekpyrotic and cyclic cosmologies];
Jonas & Lehners PRD(20)-a2008 [and higher-order quantum gravity corrections].
@ In specific approaches:
Glaser & Surya a1410 [2D causal set quantum gravity];
Dhandhukiya & Sahlmann PRD(17)-a1608,
Brahma & Yeom PRD(18)-a1808 [lqg/lqc].
@ Specific model spacetimes: Janssen et al PRD(19)-a1904 [biaxial Bianchi IX minisuperspace].
@ Real tunneling solutions:
Carlip CQG(93)gq;
Embacher GRG(96) [and spacetime dimensionality].
@ Perturbations:
Green & Unruh gq/02;
Hartle et al PRD(10) [single scalar field perturbations, eternal inflation];
Diaz Dorronsoro et al PRL(18)-a1804 [damping, stable to perturbations];
Feldbrugge et al a1805 [inconsistencies];
Di Tucci & Lehners PRD(18)-a1806 [unstable].
@ Related topics: Hawking & Wu PLB(85) [with massive scalar or R2, numerical];
Page CQG(90) [age of universe],
PRD(97)gq [size of the universe];
de Oliveira & Soares PRD(99) [homoclinic structure];
Clunan a0704 [and effective potential];
Hartle et al PRD(08)-a0802,
PRL(08)-a0711 [semiclassical];
Rajeev et al a2101
[bouncing model analogue and Lorentzian path-integral representation].
> Related topics: see AdS spacetime;
arrow of time; gravitational instantons;
inflation and planck-scale physics.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 11 may 2021