Gravitational Entropy |
In General
> s.a. decoherence; lanczos potential;
particle effects; spacetime foam.
* Goals: (i) Give a thermodynamical
meaning to particle creation in gravitational fields; (ii) Generalize the second law
to cosmology; (iii) Define an entropy for the gravitational field (Penrose: square of
the Weyl tensor).
* Hints: One can define an entropy in
ways that seem to be related to a gravitational arrow of time, e.g., one related to
particle production, by using the Weyl tensor, or one related to inhomogeneity and clustering.
@ General references: Tolman PR(30);
Davies 74, in(81);
Davies et al PRD(86);
Marolf et al PRD(04)ht/03 [observer dependence];
Fatibene et al IJGMP(09) [from Holst Lagrangian];
Smoot IJMPD(10)-a1003 [entropy flow and holography];
Clifton et al CQG(13)-a1303 [based on the Bel-Robinson tensor];
Lewkowycz & Maldacena JHEP(13)-a1304 [generalized, for euclidean solutions];
Ruchin et al EPJC(17)-a1312 [Perelman's W-entropy];
Fursaev a1406;
Kothawala & Padmanabhan PLB(15)-a1408 [and emergent gravity, zero-point length];
Camps & Kelly JHEP(15)-a1412 [without replica symmetry];
Chen et al a1506 [thermofield dynamics approach].
@ Weyl tensor: Penrose in(79);
Smolin GRG(85) [matter to gravitational radiation];
Husain PRD(88);
Pelavas & Lake PRD(00)gq/98 [self-similar spacetimes];
Grøn & Hervik gq/02;
Amarzguioui & Grøn PRD(05)gq/04 [collapsing matter];
Rudjord et al PS(08) [and black holes];
Belgiorno & Catino CQG(20)-a2005 [candidate Weyl entropy density];
> s.a. Lemaître-Tolman-Bondi Solutions;
Weyl Curvature Hypothesis.
@ And gravitational action: Banerjee & Majhi PRD(10)-a1003;
Astaneh et al a1411,
Dong & Miao JHEP(15)-a1510 [and total derivative terms];
Tuveri et al a1604.
@ Phase space approach:
Rothman & Anninos PLA(97),
PRD(97)gq/96;
Rothman GRG(00)gq/99.
@ Noether approach: Fatibene et al AP(00)gq/99 [and Taub-Bolt];
Garfinkle & Mann CQG(00)gq [and Taub-Bolt].
@ Upper bound: Bousso JHEP(99)ht [conjecture];
Flanagan et al PRD(00)ht/99;
Low CQG(02)gq/01;
Frampton & Kephart JCAP(08)-a0711 [and dark matter];
Hsu & Reeb MPLA(09)-a0908 [monsters].
@ Spacetime regions or subsets: Mäkelä & Peltola gq/04 [spacelike 2-surfaces];
Pabmanabhan IJMPD(12) [and distortion of null surfaces in spacetime];
Baccetti & Visser CQG(14)-a1303 [for arbitrary bifurcate null surfaces];
Balasubramanian et al JHEP(13)-a1305 [entropy of a hole in spacetime];
Pesci Ent(15)-a1404 [matter entropy flux across horizons].
@ Covariant, geometrical meaning: Hawking & Hunter PRD(99)ht/98;
Lowe JHEP(99)ht;
Mäkelä gq/05 [arbitrary spacelike 2-surface].
Specific Types of Manifolds / Metrics > s.a. black-hole entropy
and thermodynamics; de sitter space;
LTB Solutions.
@ Cosmology: Frautschi Sci(82)aug;
Gibbons NPB(87),
NPB(88);
Prigogine IJTP(89);
Prigogine et al GRG(89);
Brandenberger et al PRD(93) [density perturbations in inflation];
Barrow NA(99)ap;
Grøn & Hervik CQG(01)gq/00 [Bianchi I];
Obregón et al PRD(03)ht [from Cardy-Verlinde formula];
Pelavas & Coley IJTP(06)gq/04 [Szekeres & Bianchi VIh];
Nielsen & Ninomiya IJMPA(06)ht [and periodic universe];
Hernández & Quevedo GRG(07)gq [Bianchi I and V, and Cardy-Verlinde construction];
Frampton et al CQG(09)-a0801;
Pavón et al a1212-MG13 [the generalized second law in inflationary cosmology];
Sussman AN(14)-a1408 [and cosmic expansion];
Sussman & Larena CQG(15)-a1503 [local cosmic voids];
Kiessling a1905-in;
Saha IJMPA-a1910 [Viaggiu entropy];
Chakraborty et al a1912 [models];
> s.a. cosmological acceleration.
@ Collapsing spacetimes: Maiella & Stornaiolo IJMPA(10)-a1007 [spherical symmetric, Cardy-Verlinde formula];
> s.a. gravitational collapse.
@ Topology: Liberati & Pollifrone NPPS(97)ht/95 [manifolds with boundary, mathematical].
@ Boundaries / horizons: Carlip CQG(99)gq;
Brustein PRL(01)ht/00 [causal horizon in FLRW models];
Mäkelä & Peltola gq/02 [Rindler];
Padmanabhan CQG(02)gq,
GRG(02)gq [spherical symmetry],
CQG(04)gq/03 [and density of states];
Chatterjee & Majumdar Pra(04)gq-conf;
Lemos & Zaslavskii PRD(10)-a0904 [quasiblack holes];
Romero et al IJTP(12)-a1109 [black holes and wormholes];
> s.a. horizons.
@ Singularities: Anastopoulos & Savvidou CQG(12)-a1103.
@ In other theories of gravity: Camps JHEP(14)-a1310
[curvature-squared theories, extension of the Ryu-Takayanagi prescription];
> s.a. Gauss-Bonnet Gravity.
And Quantum Theory
> s.a. quantum gravity phenomenology [limitations to spacetime measurements].
@ Entanglement entropy:
Fursaev PRD(08);
Jacobson a1204-GRF [finiteness];
Cooperman & Luty JHEP(14)-a1302 [renormalization, and effective action];
Gyongyosi a1403
[quantum gravity and smooth entanglement entropy transfer];
Bhattacharyya & Sharma JHEP(14)-a1405 [higher-derivative gravity];
Nomura & Weinberg JHEP(14)-a1406 [semiclassical spacetime];
Kastor et al a1604 [Lovelock gravity, extended first law].
@ Particle creation: Hu PLA(83),
& Kandrup PRD(87);
Kandrup IJTP(88);
Prigogine et al PNAS(88);
Nesteruk pr(91);
Rau in(95)ht/94.
@ Loop quantum gravity: Krasnov PRD(97)gq/96 [boundaries];
Livine & Terno NPB(08)-a0706 [bulk entropy and holographic regime].
@ Quantum gravity:
Kandrup CQG(88) [second law and quantum cosmology];
Garattini PLB(99)ht [spacetime foam];
Balasubramanian et al JHEP(07)-a0705 [AdS-cft and half-BPS universes];
Kothawala et al PRD(08)-a0807 [quantization, various gravity theories];
> s.a. entropy in quantum theory.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 21 sep 2020