|  Connection-Based Formulations of General Relativity | 
In General
  > s.a. ashtekar-variables formulation (lqg variables);
  gauge theories of gravity.
  * Idea: Formulations
    in which the main variables include a connection and possibly other
    fields, but not a metric.
  @ Affine connection:
    Kijowski & Werpachowski RPMP(07)gq/04;
    Poltorak gq/04-GR17;
    Popławski GRG(14)-a1202;
    Castillo-Felisola & Skirzewski RMF-a1410.
  @ GL(4)-invariant form:
    Floreanini & Percacci CQG(90),
    CQG(90).
  @ Connection + scalar density:
    Capovilla et al PRL(89),
    CQG(91);
    Capovilla & Jacobson MPLA(92)gq;
    Bengtsson & Peldán PLB(90);
    Peldán PLB(90) [with matter];
    Bengtsson PLB(91);
    Dadhich et al CQG(91).
  @ Two connections: Barbero IJMPD(94)gq/93,
    PRD(94)gq/93.
  @ Two-forms: Plebański JMP(77);
    Bengtsson gq/93,
    CQG(95)gq;
    Katsuki et al IJMPA(96) [BF theory, quantum gravity];
    Pillin CQG(96) [and matter];
    Grant gq/97 [self-dual];
    Lewandowski & Okołów CQG(00)gq/99;
    Krasnov GRG(11)-a0904 [pedagogical];
    Capovilla et al CQG(10)-a1004 [Krasnov's generalization];
    > s.a. BF theories; 1st-order actions;
      gravity.
  @ Other versions: Floreanini & Percacci CQG(91) [GL(3) connection + other];
    Kozameh & Newman GRG(91);
    Capovilla et al CQG(91),
    Robinson CQG(96)
      [sl(2, \(\mathbb C\))-valued connection, and forms],
    JMP(03) [generalized forms];
    Miković & Vojinović CQG(12)-a1110 [as a constrained topological theory of the Poincaré 2-group];
    Mol AACA(17)-a1406 [non-metricity formulation];
    González & Montesinos PRD(15)-a1501 [SO(3, \(\mathbb C\)) gauge connection and complex-valued 4-form];
    Robinson a1506 [generalized differential forms].
Connection + Spinorial / Vierbein Variables
  > s.a. approaches to canonical quantum gravity; initial-value
  formulation; loop variables; Metric-Affine Gravity.
  @ General references:
    Deser & Isham PRD(76);
    Dubois-Violette & Madore CMP(87);
    Obukhov & Tertychniy CQG(96);
    Clayton CQG(97)gq/06 [constraint algebra];
    Lusanna & Russo gq/98,
    gq/98;
    Aldrovandi & Barbosa gq/02 ["spacetime skeleton"];
    Aldrovandi et al GRG(03)gq [gravity as anholonomy],
    gq/04-proc;
    Kummer & Schütz EPJC(05)gq/04;
    Estabrook PRD(05)gq/04 [structure of vacuum equations],
    CQG(06)gq/05 [conservation laws];
    Zinoviev JHEP(06)ht/05,
    ht/05 ["dual" formulation];
    Cianci et al CQG(05)mp,
    IJGMP(06)mp;
    Wang PRD(05)gq;
    Abou-Zeid & Hull JHEP(06) [chiral expansion];
    Itin a0711-ch [coframe];
    Yepez a1106 [Einstein's 1928 proposal];
    Socolovsky a1110;
    Ivancevic a1111-wd
      [SL(2, \(\mathbb C\)) connection and 2 spinor-valued 1-forms, matter interactions];
    > s.a. canonical general relativity.
  @ With fermions: Fatibene et al GRG(98);
    Canarutto JMP(98) [including degenerate tetrad];
    Godina et al GRG(00).
  @ With bosons: Fatibene et al GRG(99).
  @ Generalized:
    Abe IJMPA(90) [supersymmetric].
Related Formulations
  @ Bundle of Frames version: (2 × 2 matrix)
    Chinea PRL(84);
    Chinea & Guil JMP(85).
  @ Other forms: Herfray JMP(17)-a1610 [chiral formulations and twistor action].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2021