Loop Variables for General Relativity |
In General > s.a. kaluza-klein theories.
* Idea: A formulation based on a
set of variables inspired by the loop states for canonical quantum gravity.
* Small T-algebra: The
Wilson loop configuration variables and the momentum variables for a loop
C are, respectively,
TC(A):= \(1\over2\)tr P exp{κ ∫C A} , T a[α](s):= \(1\over2\)tr[P exp{κ ∫C A} Ea(α(s)) ] .
* Smeared momentum variables:
TS(A):= ∫S dSab ηabc T cC{·, τ)(σ,τ), where T aC{·, τ) := tr hC{·, τ)(σ,τ)[A] Ea(α(σ,τ)) .
* Full T-algebra: Defined by
T ab[C](s, s'):= \(1\over2\)tr [P exp{κ ∫s's A} Ea(C(s)) P exp{κ ∫ss' A} Eb(C(s'))] ,
and similarly for a higher number of indices.
> In quantum gravity:
see loop representation; 3D quantum gravity.
References > s.a. supergravity.
@ General: Mensky in(84)?;
Rovelli & Smolin PRL(88),
NPB(90);
Manojlović CQG(90);
Goldberg et al CMP(92),
Boström CQG(92) [degeneracy in small algebra];
Loll CQG(93)gq [inequalities on traces of holonomies];
Venkatesh a1305;
Gambini et al a2003
[and the algebra of non-local observables].
@ With holonomy of metric connection:
Refs in Bezerra & Letelier CQG(91).
@ Similar variables:
Barrett GRG(89) [Lorentz group holonomies];
Newman & Rovelli PRL(92) [lines of force];
Venkatesh a1211 [from loop algebras].
> Online resources:
see Wikipedia page [loop representation in gauge theories and quantum gravity].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 mar 2020