|  Quantum Mechanical Tunneling | 
In General > s.a. WKB Approximation.
  * Idea: A particle
    whose wave function is initially localized on one side of a potential
    barrier, with energy less that the maximum value of the barrier, has
    a non-zero probability of being found on the other side later.
  @ References: Burgess AJP(91)nov [imaginary time];
    Cushing FP(95);
    Leavens FP(95);
    Merzbacher PT(02)aug [history];
    Nimtz & Haibel 08;
    Razavy 14 [e1 r PT(04)feb];
    news guardian(14)oct [how it works].
  > Examples: see
    boundary conditions in quantum cosmology.
Tunneling Time > s.a. causality violations.
  * Time scale: For
    thin barriers, the tunneling time is linear in the width; For thicker
    ones, it saturates (Hartman effect) and there is a time scale associated
    with it; What does it mean? The tunneling speed is usually characterized
    by the Wigner velocity, but there are other proposals; The group delay is
    proportional to the energy stored, and equal to the dwell time plus a
    self-interference delay.
  * Measurement: It has
    been measured in experiments based on the attoclock in ultrafast laser
    ionization of Helium atoms.
  * Remark: The transit time
    of a particle between two points is not necessarily well defined in
    standard quantum mechanics, whereas it is in Bohm's theory; For this
    reason tunneling times may allow us to test the pilot-wave approach
    by providing us with a situation in which Bohm's theory can make a
    definite prediction when standard quantum mechanics can make none.
  @ General references: Fertig PRL(90) [distribution];
    Chen & Wang PLA(90);
    Olkhovsky & Recami PRP(92);
    Landauer & Martin RMP(94);
    Leavens PLA(95);
    Steinberg PRL(95);
    Eisenberg & Ashkenazy FP(97)qp/96;
    Challinor et al PLA(97);
    Abolhasani & Golshani qp/99;
    Yamada PRL(99);
    Ruseckas PRA(01)qp;
    Chuprikov qp/01;
    de Carvalho & Nussenzveig PRP(02);
    Privitera et al RNC(03)qp/04 [intro];
    Olkhovsky et al PRP(04);
    Wang et al PRA(04);
    Davies AJP(05)jan-qp/04 [clock model];
    Chuprikov qp/05 [comparison between definitions];
    Winful NJP(06)qp [meaning];
    Wu a0804 [imaginary time];
    Bernardini AP(09)-a0903 [and scattering delay time];
    Nimtz a0903 [rev];
    Ordóñez & Hatano PRA(09)-a0905 [non-existence of intrinsic tunneling time];
    De Leo & Leonardi JPA(11)-a1103 [phase time formula];
    Aichmann & Nimtz FP(14) [misleading interpretations];
    Demir & Güner AP(17)-a1512 [entropic formulation];
    Lunardi & Manzoni a1807 [probability distribution];
    Sokolovski & Akhmatskaya a2102.
  @ Phase space approach:
    Marinov & Segev PRA(96);
    Xavier et al PRL(97) [semiclassical].
  @ Hartman effect:
    Winful OE(02),
    PRL(03),
    PRP(06);
    Martínez & Polatdemir PLA(06);
    Winful SPIE(07)-a0708;
    Bhattacharya & Roy JMP(13) [precluded for dissipative systems];
    > s.a. causality in quantum theory.
  @ Measurements: Palao et al PLA(97)qp/99;
    Camus et al PRL(17)-a1611
    + news sn(17)jul [evidence];
    Sainadh et al Nat(19)mar
    + news cosmos(19)mar [tunnelling is instantaneous];
    Ramos et al a1908 [traversal time];
    Spierings & Steinberg a2101;
    > s.a. experiments in quantum mechanics.
  @ Related topics: Zhou et al PLA(01) [phase transition to crossover];
    Winful et al PRA(04) [Dirac particles];
    Bernardini EPL(08)-a0804 [relativistic, phase and dwell times];
    Xu et al FP(13) [relativistic extensions];
    Bhattacharya PRA(14) [two-state particle tunneling through a thermal magnetic barrier];
    Kelkar et al AP(17)-a1705 [with dissipation];
    Nimtz & Aichmann a1906 [on 0-time tunneling].
Related Topics
  > s.a. quantum chaos; quantum
  equivalence principle; wigner function.
  @ Dynamics: Krekora et al PRA(01) [speed];
    Delgado et al PRA(03);
    Faria et al FP(06) [Kramers escape rate theory];
    Calzetta & Verdaguer JPA(06) [decoherence and anomalous diffusion];
    Anastopoulos & Savvidou PRA(17)-a1611 [quasi-classical paths].
  @ Approaches: Olavo qp/96 [in classical interpretation of quantum mechanics];
    Anastopoulos & Savvidou JMP(06)qp,
    JMP(08)-a0706,
    Anastopoulos JMP(08)-a0706 [as time-of-arrival problem, and decay];
    Levkov et al PRL(07)-a0707 [semiclassical solutions];
    Chuprikov a1303 [new approach];
    Norsen AJP(13)apr [pilot-wave perspective];
    Turok NJP(14)-a1312 [in real time, using complex classical trajectories];
    Hipple a1411 ["tunneling" transform];
    Riahi IJMPB-a1707 [method of Laplace transforms];
    Espinosa JCAP(18)-a1805 [calculation of tunneling actions];
    Erman & Turgut FiP(19)-a1904 [perturbative approach to bound-state splitting];
    Aragon-Muñoz et al a2004 [semiclassical, pilot-wave-like];
    Samarin a2103 [local realism point of view];
    > s.a. Polymer Representation.
  @ Apparent superluminality:
    Krekora et al PRA(01);
    Sokolovski & Liu PRA(01) [semiclassical];
    Winful PRL(03);
    Sokolovski PRS(04)qp/03;
    Nimtz FP(11)-a1004 [violation of special relativity];
    Aichmann & Nimtz a1304;
    Fayngold a1412.
  @ Other related topics: Aharonov et al PRA(93) [penetration into classically forbidden regions];
    Eddi et al PRL(09) [analog in classical-wave + particle association];
    Bender & Hook JPA(11)-a1011 [classical analog for complex-energy particle];
    Ivlev a1108 [penetration through classical barriers?];
    > s.a. GUP phenomenology; instantons;
      quantum systems [tunneling in momentum space, potential step].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 mar 2021