![]() |
In General
> s.a. non-equilibrium statistical mechanics; generalized
thermodynamics [relativistic]; statistical mechanical systems.
* KLS model: (Katz-Lebowitz-Spohn)
A modified Ising lattice gas that has become an important example of non-equilibrium system.
@ States: González & Téllez JPA(09) [organized-disorganized state crossover];
Cramer & Eisert NJP(10)-a0911 [relaxation to Gaussian states].
@ Systems, in general: Bustamante et al PT(05)jul [small systems];
Jou et al 10 [flowing fluids];
Hubeny & Rangamani AHEP(10)-a1006 [strongly-coupled field theories, holographic methods];
Gujrati PRE(12)-a1101 [inhomogeneous systems];
Schlein a1210-proc [systems of interacting bosons];
Levin et al PRP(14)-a1310 [with long-range interactions];
Brunelli et al NJP(15)-a1412 [cavity optomechanical device];
Viermann et al PRE(15)-a1411 [statistical field theory for classical particles];
Dymov AHP(16)-a1501 [weakly stochastically perturbed system of oscillators];
Martiniani et al PRX(19) [quantifying hidden order].
@ Active matter:
Fodor et al PRL(16) [thermal equilibrium tools];
Junot et al PRL(17) [no well-defined pressure].
@ Systems, classical: Buča et al a2103 [exactly solvable model, the classical Rule 54].
@ Systems, quantum: de Almeida PhyA(08)-a0806;
Polkovnikov et al RMP(11)-a1007;
Yukalov PLA(11) [isolated].
> Other systems:
see classical systems [many-body]; composite quantum systems;
types of field theories [thermal]; states in quantum field theory.
Steady States
* Idea: States in
which there are non-zero flows, but they are time-independent.
@ General references:
Penrose & Coveney PRS(94),
Evans & Coveney PRS(95) ["canonical" non-equilibrium ensemble];
Rey-Bellet & Thomas CMP(02) [convergence to equilibrium];
Dewar JPA(03) [properties, and information theory];
Eckmann mp/03-proc;
Sasa & Tasaki JSP(06);
Zia & Schmittmann JPA(06) [classification];
Blythe PRL(08) [reversibility and heat dissipation];
Moldoveanu et al PRB(11)-a1104 [results];
Zhang et al PRP(12) [stochastic theory];
Altaner et al PRE(12)-a1105 [network representations];
Ness PRB(14)-a1312 [universality and approximation];
Komatsu et al JSP(15)-a1405 [exact equalities and thermodynamic relations];
Ghosh et al a2002 [geometric formalism].
@ Effective equilibrium description:
Barré et al PRL(02);
Dutt et al AP(11).
@ Fluctuations: Derrida JSM(07)-ln [fluctuations in density and current];
Maes & van Wieren PRL(06) [time-symmetric];
Taniguchi & Cohen JSP(07) [Onsager-Machlup theory, fluctuation theorems];
Abou Salem mp/07 [fluctuations of macroscopic observables];
Taniguchi & Cohen JSP(08) [extended Onsager-Machlup theory, thermodynamics and fluctuations];
Sewell RPMP(12)-a1206 [macrostatistical treatment];
Bernard & Doyon JPA(13)-a1306 [time-reversal symmetry and fluctuation relations].
@ Relaxation processes:
Kemper et al PRX(18) [theory].
@ Examples: Piasecki & Soto PhyA(06) [and approach];
Mazilu & Williams AJP(09)may [two-temperature linear spin model];
Maes & Netocny JMP(10)-a0911 [McLennan ensembles];
Öttinger JSP(10) [two approaches to averages and fluctuations];
Hurtado et al JSP(14) [currents in non-equilibrium diffusive systems];
Wang JSM(17)-a1607 [in quantum chaotic systems].
Applications and Phenomena
@ References: Haldar et al AP(17)-a1710 [FLRW cosmological models].
> Examples of phenomena:
see dissipation; Nyquist Theorem;
Relaxation; Self-Organization;
superconductivity; Transport;
turbulence.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 mar 2021