States and Systems in Non-Equilibrium Statistical Mechanics  

In General > s.a. non-equilibrium statistical mechanics; generalized thermodynamics [relativistic]; statistical mechanical systems.
* KLS model: (Katz-Lebowitz-Spohn) A modified Ising lattice gas that has become an important example of non-equilibrium system.
@ States: González & Téllez JPA(09) [organized-disorganized state crossover]; Cramer & Eisert NJP(10)-a0911 [relaxation to Gaussian states].
@ Systems, in general: Bustamante et al PT(05)jul [small systems]; Jou et al 10 [flowing fluids]; Hubeny & Rangamani AHEP(10)-a1006 [strongly-coupled field theories, holographic methods]; Gujrati PRE(12)-a1101 [inhomogeneous systems]; Schlein a1210-proc [systems of interacting bosons]; Levin et al PRP(14)-a1310 [with long-range interactions]; Brunelli et al NJP(15)-a1412 [cavity optomechanical device]; Viermann et al PRE(15)-a1411 [statistical field theory for classical particles]; Dymov AHP(16)-a1501 [weakly stochastically perturbed system of oscillators].
@ Active matter: Fodor et al PRL(16) [thermal equilibrium tools]; Junot et al PRL(17) [no well-defined pressure].
@ Systems, quantum: de Almeida PhyA(08)-a0806; Polkovnikov et al RMP(11)-a1007; Yukalov PLA(11) [isolated].
> Other systems: see classical systems [many-body]; composite quantum systems; types of field theories [thermal]; states in quantum field theory.

Steady States
* Idea: States in which there are non-zero flows, but they are time-independent.
@ General references: Penrose & Coveney PRS(94), Evans & Coveney PRS(95) ["canonical" non-equilibrium ensemble]; Rey-Bellet & Thomas CMP(02) [convergence to equilibrium]; Dewar JPA(03) [properties, and information theory]; Eckmann mp/03-proc; Sasa & Tasaki JSP(06); Zia & Schmittmann JPA(06) [classification]; Blythe PRL(08) [reversibility and heat dissipation]; Moldoveanu et al PRB(11)-a1104 [results]; Zhang et al PRP(12) [stochastic theory]; Altaner et al PRE(12)-a1105 [network representations]; Ness PRB(14)-a1312 [universality and approximation]; Komatsu et al JSP(15)-a1405 [exact equalities and thermodynamic relations].
@ Effective equilibrium description: Barré et al PRL(02); Dutt et al AP(11).
@ Fluctuations: Derrida JSM(07)-ln [fluctuations in density and current]; Maes & van Wieren PRL(06) [time-symmetric]; Taniguchi & Cohen JSP(07) [Onsager-Machlup theory, fluctuation theorems]; Abou Salem mp/07 [fluctuations of macroscopic observables]; Taniguchi & Cohen JSP(08) [extended Onsager-Machlup theory, thermodynamics and fluctuations]; Sewell RPMP(12)-a1206 [macrostatistical treatment]; Bernard & Doyon JPA(13)-a1306 [time-reversal symmetry and fluctuation relations].
@ Examples: Piasecki & Soto PhyA(06) [and approach]; Mazilu & Williams AJP(09)may [two-temperature linear spin model]; Maes & Netocny JMP(10)-a0911 [McLennan ensembles]; Öttinger JSP(10) [two approaches to averages and fluctuations]; Hurtado et al JSP(14) [currents in non-equilibrium diffusive systems]; Wang JSM(17)-a1607 [in quantum chaotic systems].

Applications and Phenomena
@ References: Haldar et al AP(17)-a1710 [FLRW cosmological models].
> Examples of phenomena: see dissipation; Nyquist Theorem; Relaxation; Self-Organization; superconductivity; Transport; turbulence.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 5 mar 2018