Types of Inflationary Scenarios  

In General > s.a. cosmological models [variants and alternatives to inflation]; general-relativistic cosmology; quintessence.
* Types of fields: Conformally coupled fields tend not to drive inflation; A cosmological constant does drive (exponential) inflation.
* GUT-era inflation: The first type of scenario; Inflation occurs because of a symmetry breaking phase transition related to a Higgs field; In the original proposal, the universe cools down to a false (metastable) vacuum, from which it eventually tunnels out; In the new inflation, the effective potential for the Higgs field is very flat near the old vacuum, and inflation occurs not because the universe is stuck in a false vacuum, but because it spends time rolling down the potential.
@ Reviews: Kolb PRP(93); Linde JPCS(05)ht [including string cosmology]; Mukhanov ap/05; Baumann & McAllister 15-a1404 [and string theory].
@ General references: Lyth & Riotto PRP(99); Linde JCAP(03)ap-in [closed, Ω > 1]; Weinberg PRD(10)-a0911 [in asymptotically safe theories of gravity]; Martin et al PRD(11)-a1009 [Bayesian evidence for the best model]; Maleknejad et al PRP(13)-a1212 [role of gauge fields]; Martin et al PDU-a1303 [comparison of predictions]; Martin et al JCAP(14)-a1312, Martin a1312-conf [ranking of scenarios based on Planck data]; Baumann et al JCAP(15)-a1407 [using B-modes]; Pieroni a1611 [classification of inflationary models].
@ Original models: Guth PRD(81); Linde PLB(82), Albrecht & Steinhardt PRL(82) [new inflation].

Double Inflation
* Motivation: Was introduced to decouple large and small-scale density perturbations.
@ References: Silk & Turner PRD(87); Parkinson et al PRD(05) [testing with WMAP].

Eternal Inflation > s.a. inflation [and no-boundary wave function]; multiverse.
* Idea: The term describes a number of different scenarios, classified by Winitzki; The usual one predicts that the observable universe is inside a bubble embedded in a vast multiverse, most of which is still undergoing super-accelerated expansion, a de Sitter background in which pocket universes nucleate at a steady rate.
@ References: Vilenkin PRD(92) [need for a beginning]; Borde & Vilenkin PRL(94) [initial singularity]; Garriga et al PRD(99)ap/98, Vilenkin IJTP(99)ht/98 [open universes and anthropic principle]; Guth in(01)ap/03; Bousso et al PRD(06)ht; Mersini-Houghton & Parker a0705 ["expensive"]; Winitzki 08; Aguirre & Johnson RPP(11)-a0908 [observability of bubble collisions]; Ellis & Stoeger GRG(09)-a1001; Sekino et al PRD(10)-a1003 [topological phases]; Linde & Noorbala JCAP(10)-a1006 [probability measures]; Feeney et al PRL(11)-a1012, PRD(11)-a1012 + news ns(10)dec, bbc(11)aug [cmb observational test of bubble collisions]; Johnson & Lehners PRD(12) [cyclic bubble universes]; Susskind a1205 [is the multiverse past-eternal?]; Mersini-Houghton & Perry CQG-a1211 [not eternal]; Brandenberger et al PRD(15)-a1504 [back-reaction of long-wavelength fluctuations, and termination].

(Hyper)Extended Inflation
* Idea: Assume a variable G to get a graceful exit without fine tuning.
@ Extended: La et al PLB(89); La & Steinhardt PRL(89); Laycock & Liddle PRD(94).
@ Hyper-extended: Kolb et al PRD(90); Steinhardt & Accetta PRL(90); Liddle & Wands PRD(92); Crittenden & Steinhardt PLB(92).

Chaotic Inflation > s.a. boundary conditions in quantum cosmology; phenomenology.
* Idea: Use an extra scalar field φ, and get inflation only in the regions where φ starts at a large V(φ); Because of the large effective friction, φ evolves slowly at first, then faster; Disadvantage: One also gets a cosmological constant, Vmin = Λeff.
@ References: Linde PLB(88); Linde & Zelnikov PLB(88) [baby universes with fluctuating dimension]; Khalfin IJTP(89) [against]; Susperregi PLB(98) [potentials]; Vilenkin gq/04 [vs eternal, terminology]; Bertolami & Duvvuri PLB(06) [and Chaplygin gas]; Kaloper & Sorbo PRL(09)-a0811; De Felice et al JCAP(11) [in modified gravitational theories]; Enqvist et al JCAP(12)-a1107 [in non-metric gravity]; Bachlechner et al PRD(15)-a1404.

Other Models > s.a. (A)dS-cft; inflation [issues]; inflation and planck-scale physics [and quantum gravity]; quantum-gravity phenomenology.
* Starobinski model: A model developed as a cosmology without singularity in the 1980s, usingan action with leading Einstein term R, a quantum-gravity motivated R2 term with a huge coefficient, and negligible higher-order terms.
* Warm inflation: A picture that takes into account the importance of dissipation and fluctuation to inflationary dynamics.
@ Non-minimal couplings: Faraoni PRD(00)gq, IJTP(01)ht/00-conf; Pallis PLB(10).
@ Hybrid inflation: Linde PRD(94); Lazarides IJMPA(07)-a0706-proc [followed by modular inflation].
@ Warm inflation: Bellini CQG(99)gq, CQG(00)gq/99; Berera CP(06) [rev].
@ Assisted inflation, multiple scalars: Liddle et al PRD(98); Copeland et al PRD(99)ap; Kanti & Olive PLB(99), PRD(99) [5D]; Aguirregabiria et al GRG(02)gq/01 [Bianchi VI0]; Wands et al PRD(02)ap [2-field]; Kim & Liddle PRD(06)ap [Nflation, numerical]; Hartong et al CQG(06); Peterson & Tegmark a1111 [geometric approach to tests]; > s.a. Curvaton.
@ Inflaton potential: Lidsey et al RMP(97) [rev]; Easther & Kinney PRD(03)ap/02 [Monte Carlo reconstruction]; Grozdanov et al NPB(16)-a1508 [from the exact renormalisation group].
@ Without big bang: Goldwirth & Piran GRG(91); Durrer & Laukenmann CQG(96); Minkevich gq/03, NPCS(03)gq.
@ In Bianchi models: Cervantes-Cota CQG(99) [V, Brans-Dicke]; Aguirregabiria et al PRD(00)gq, GRG(02)gq/01 [assisted], CQG(04) [I, braneworld]; Chakraborty & Paul PRD(01) [with scalar, no-hair]; Paul PRD(02)gq [brane world]; > s.a. bianchi IX models.
@ Stochastic: Matacz PRD(97); Tsamis & Woodard NPB(05) [quantum gravitational]; Tolley & Wyman JCAP(08)-a0801; Kohli & Haslam CQG(15)-a1408 [and general relativity].
@ Natural inflation: Freese et al PRL(90); Freese & Kinney PRD(04)hp; Freese & Kinney JCAP(15)-a1403 [and Planck and BICEP2 data].
@ From instantons: Linde PRD(99)hp/98 [Coleman-de Luccia instanton in single-field toy model]; > s.a. inflation and planck-scale physics [quantum cosmology].
@ Spinor-driven: Böhmer PRD(08)-a0804 [dark spinor]; Barenboim JHEP(09)-a0811 [right-handed neutrino condensate]; Shankaranarayanan IJMPD(09)-a0905-GRF [spinor condensate], a1002-MG12 [dark spinor].
@ Higgs inflation: Bezrukov CQG(13); Cook et al PRD(14)-a1403, Hamada et al PRL(14)-a1403 [and BICEP2 results]
@ Other models: Damour & Mukhanov PRL(98) [without slow roll]; Borde et al PRL(03)gq/01 [past]; Sami G&C(02) [with oscillations]; Kaloper PLB(04)hp/03 [disformal]; Arkani-Hamed et al JCAP(04)ht/03 [ghost]; González-Díaz & Jiménez-Madrid PLB(04) [phantom, and "big trip"]; Copeland & Rajantie JCAP(05)ap [locked inflation, end]; Boubekeur & Lyth JCAP(05)hp [hilltop inflation]; Barenboim & Lykken PLB(06)ap/05 ["slinky", and dark energy]; Watson et al JCAP(07)ht/06 [without inflaton fields]; Golovnev et al JCAP(08)-a0802 + pw(08)feb [vector-driven inflation]; Barnaby CJP(09)-a0811-proc [non-local fields]; Biswas & Alexander PRD(09)-a0812 [cyclic]; Germani & Kehagias AIP(10)-a0911 [non-conventional scalar field]; Afshordi et al JCAP(11)-a1006 [with spherical underdense or overdense regions]; Cline et al JCAP(11)-a1106 [chain inflation]; Asselmeyer-Maluga & Król a1301, AHEP-a1401 [geometric, from exotic smoothness]; Gwyn & Lehners JHEP(14) [supergravity and non-canonical kinetic terms]; Mukhanov FdP(15)-a1409 [extension without self-reproduction]; Fertig et al JCAP(16)-a1507 [conflation, in scalar-tensor theories]; Asaka et al PTEP(16)-a1507 [Starobinski model, from higher dimensions]; > s.a. quantum phase transitions [QCD]; finsler spacetimes; unimodular gravity; weyl unified theory.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 12 dec 2017