|  Wave-Function Collapse as a Dynamical Process | 
In General
  > s.a. wave-function collapse [including some models]; zeno effect.
  * Idea: The point of view
    according to which wave-function collapse (quantum-state reduction) is a physical
    process, as opposed to just being related to our knowledge and description of
    the system; In a relativistic scenario the collapse will then happen at a finite
    speed, as opposed to the instantaneous collapse of the conventional view.
  * Tests: One way to test it is
    to look for quantum behaviour in larger and larger objects; If collapse models
    are correct, then quantum effects will not be apparent above a certain mass;
    2015, Physicists have already carried out double-slit interference experiments
    with large molecules; Various groups are planning to search for such a cut-off
    using metal clusters and nanoparticles, and hope to see results within a decade;
    2018, Work on bulk heating experiments in spontaneous collapse.
  * Motivation: Using this
    point of view it becomes easier to explain how quantum fluctuations in
    the early universe might have become classical.
  @ General references: Lewin FP(09) [as an effect of field quantization];
    Omnès a1006,
    a1601
      [derivation of collapse from quantum dynamics];
    Carlesso & Donadi a1907-proc [rev];
    Carlesso & Bassi a2001-in [rev, tests].
  @ Speed / time for collapse:
    Squires PLA(90);
    Pegg PLA(91);
    Zurek qp/03 ["decoherence timescale"];
    Ohanian a1311 [atom-interferometer test].
  @ State recovery / uncollapse: Katz et al PRL(08)-a0806;
    Jordan & Korotkov CP(10)-a0906 [undoing quantum measurements];
    news PhysOrg(13)nov.
  @ Objective collapse, and retina / mind:
    Georgiev qp/02;
    Thaheld qp/06/PRA,
    BioSys(08)qp/06;
    Ghirardi & Romano JPCS-a1401 [collapse models and perceptual processes];
    Ghirardi IJTP(15)-a1411 [reply to Elio Conte].
  @ Constraints: Jones et al FP(04)qp [SNO experiment];
    Curceanu et al JAP(15)-a1502 [from X-ray experiments];
    Helou et al PRD(17)-a1606,
    Carlesso et al PRD(16)-a1606 [from gravitational-wave detectors].
  @ Other phenomenology:
    Squires PLA(91),
    Pearle et al FP(99)qp/00 [and radiation];
    Pearle FP(12)-a1003 [and cosmogenesis];
    Donadi et al FP(13)-a1207 [and neutrino oscillations],
    FP(13)-a1207 [and flavor oscillations];
    Okon & Sudarsky FP(14)-a1309 [advantages for cosmology and quantum gravity];
    Donadi & Bassi JPA(15)-a1408 [and electromagnetic radiation];
    Toroš & Bassi JPA(18)-a1601 [and matter-wave interferometry];
    Simonov & Hiesmayr PRA(16)-a1606 [and neutral meson flavor oscillations];
    Adler a1712 [minimum temperature for solid objects],
    PRA(18)-a1801 [heating by phonon excitation];
    Carlesso & Paternostro a1906-ch [opto-mechanical tests];
    Vinante et al PRA(19) [tests with levitated nanoparticles].
  @ Collapse over a finite time:
    Marchewka & Schuss a1103;
    Ignatiev JPCS(13)-a1204;
    Moreno et al a1809
      [incompatible  with  non-local correlations and non-signaling].
  @ Related topics: Bassi et al JPA(05)qp [and E non-conservation],
    JPA(07) [and Hilbert space operator formalism];
    Bondoni a1006-wd [measurement as mathematical vs phenomenological.process];
    Tumulka a1102 [paradoxes and primitive ontology];
    Brouzakis et al PLB(12)-a1109;
    Weinberg PRA(12)-a1109;
    Rizos & Tetradis JHEP(12)-a1112;
    Simpson FP(11);
    Melkikh a1311 [and quantum field theory];
    McQueen SHPMP(15)-a1501 [four tails problems];
    Yun a1606 [entangling-speed threshold];
    Bedingham & Maroney PRA(17)-a1607 [and time-reversal symmetry];
    Tilloy a2007-FQXi
      [can wave-function collapse be heard?].
And Gravity > s.a. models of
  decoherence [gravity-related]; semiclassical gravity.
  * History: In the first lecture
    of his 1962 course on gravitation Feynman speculated that gravity would enforce
    classical behavior for masses larger than the Planck mass; The idea is related to
    work on the quantum-classical divide and attempts at building and experimenting
    with hybrid quantum-classical devices.
  * Gravity produces wave function collapse:
    A wave function collapses under the influence of gravity in a region where the
    matter density reaches a certain value (masses and lengths of the order of bacterial
    scales); Gravity provides a decoherence mechanism; Penrose's proposal is motivated
    by a fundamental conflict between the superposition principle of quantum mechanics
    and the principle of general covariance.
  * Wave function collapse produces gravity:
    2017, An idea proposed by Antoine Tilloy is that when a GRW-type flash collapses a wave
    function and causes a particle to be localized in one place, it creates a gravitational
    field at that event; Gravity remains classical.
  @ General references:
    Károlyházy NC(66);
    Diósi PLA(84)-a1412;
    Károlyházy in(85),
    et al in(86);
    Diósi PRA(89);
    Ellis et al PLB(89);
    Fivel qp/97;
    Anandan FP(99)gq/98;
    Christian gq/98-ch;
    De Filippo qp/00,
    qp/01;
    De Filippo et al PhyA(03)qp [simulation];
    Mureika PRD(06) [and large extra dimensions];
    Adler JPA(07)qp/06;
    Salart et al PRL(08)-a0803 [and Bell inequalities];
    Diósi JPCS(09)-a0902 [collapse causes gravity];
    Diósi JPCS(13)-a1302;
    Sharma & Singh GRG(14)-a1403 [Ricci identities and Dirac equations];
    Diósi FP(14),
    NJP(14)-a1404 [in bulk matter];
    Singh JPCS-a1503 [survey];
    Banerjee et al IJMPD(15)-a1505-GRF [and the cosmological constant and time].
  @ Relativistic models: Quandt-Wiese a0912;
    Stoica Quanta(16)-a1601 [continuous evolution];
    Quandt-Wiese a1701,
    a1701 [from semiclassical gravity,
      wave function evolution in a dynamically expanding  spacetime];
    Gasbarri et al PRD(17)-a1701 [mechanism];
    Okon & Sudarsky a1701 [in cosmology and quantum gravity].
  @ In pilot-wave theory: Vachaspati a1912,
    Rahmani et al a2001,
    a2001 [geometric];
    Rahmani & Golshani a2012 [dynamical interpretation].
  @ Other models: Melko & Mann gq/00 [d-dimensional Schrödinger-Newton equations];
    Gao IJTP(10)-a1001 [and spacetime discreteness];
    Adler a1401-ch
      [state vector reduction as driven by spacetime foam];
    Bera et al FP(17)-a1608 [stochastic modification of the Schrödinger-Newton equation];
    Brody & Hughston a1611-in [energy-driven stochastic master equation for the density matrix];
    Korbicz & Tuziemski a1612;
    Tilloy PRD(18)-a1709 [GRW with massive flashes];
    Laloë EPJD(20)-a1905 [small imaginary component in the gravitational coupling];
    Bruschi & Wilhelm a2006 [self gravity and quantum coherence].
  @ Penrose's proposal: Penrose in(81),
     in(86);
    Penrose GRG(96);
    Penrose  in(00);
    Gao SHPMP(13)-a1305 [critique];
    Oosterkamp & Zaanen a1401-conf [thought experiment];
    Penrose FP(14);
    Bahrami et al PRA(14)-a1408 [cutoff, and dissipative generalization]. 
  @ Gravitational self-interaction: Colin et al CQG(14)-a1403 [approximate dynamics and experimental setting].
  @ Tests: Christian PRL(05)qp [with cosmic neutrinos];
    van Wezel et al PhilM(08)-a0706 [towards an experimental test];
    Quandt-Wiese a1701 [proposal].
  > Phenomenology:
    see matter phenomenology in quantum gravity;
    models of dark energy;
    quantum cosmological perturbations.
Continuous Spontaneous Localization
  * Idea: CSL models of
    spontaneous wave function collapse modify the linear Schrödinger
    equation by adding stochastic non-linear terms to it, which leads to
    non-conservation of energy for the system under consideration; The larger
    a system is, the faster a state superposition will collpase; > s.a.
    schrödinger equation.
  * GRW mechanism: It gives
    a quantum theory without observers; In fact, two different ones by using
    either the matter density ontology (GRWm) or the flash ontology (GRWf);
    Testable deviations from quantum mechanics are known for both theories,
    but the difference is so small that no decisive experiment has been
    performed (2007).
  @ General references:
    Pearle IJTP(79),
    PRA(89) [randomly fluctuating interaction];
    Pearle & Soucek FPL(89) [path integral];
    Ghirardi & Pearle in(90);
    Nicrosini & Rimini FP(90) [stochastic processes in \(\cal H\)];
    Squires PLA(91) [without stochastic field];
    Pearle in(97)qp/98,
    in(97)qp/98,
    LNP(99)qp,
    PRA(99)qp,
    FP(00)qp [and conservation laws],
    PRA(04)qp/03 [energy-driven];
    Santos & Escobar qp/98 [beable interpretation];
    Hansson qp/00 [from non-abelian non-linearity];
    Bassi & Ghirardi PRP(03)qp;
    Dowker & Herbauts FPL(05)qp/04 [without wave function];
    Lewis SHPMP(05) [interpretation];
    Morikawa & Nakamichi PTP(06)qp/05 [as spontaneous symmetry breaking];
    Pearle JPA(07)qp/06,
    qp/06 [overview];
    Bassi JPCS(07)qp [rev];
    Bassi et al RMP(13)-a1204 [rev, and tests],
    a1212/RMP [stochastic methods];
    Bassi & Ulbricht JPCS(14)-a1401 [rev];
    Bhatt et al a1808 [quantum to classical transition].
  @ GRW mechanism:
    Ghirardi et al PRA(90),
    PRA(90);
    Tessieri et al PRA(95);
    Clifton & Monton BJPS(99),
    Bassi & Ghirardi BJPS(99),
    BJPS(99) [and enumeration principle];
    Monton SHPMP(04) [interpretation];
    Allori et al BJPS(08)qp/06 [and pilot-wave theory];
    Vacchini JPA(07) [GRW master equation and decoherence];
    Frigg & Hoefer SHPMP(07) [and probabilities];
    Goldstein et al JSP(12)-a0710 [testable predictions];
    Tumulka RVMP(09)-a0711 [flash ontology];
    Bedingham JPA(11) [hidden-variable interpretation];
    Esfeld & Gisin a1310 [John Bell's GRW flash theory];
    Wallace a1407 [tails of the GRW wave function];
    de Stefano a2103 [conceptual].
  @ GRW mechanism, variations: Smirne et al PRA(14)-a1408 [dissipative extension];
    Egg & Esfeld a1410 [GRW matter density theory (GRWm)];
    Jones et al PRA(21)-a1907,
    JPA(21)-a2012 [relativistic, no-go results].
  @ For quantum field theory: Tumulka PRS(06)qp/05 [GRW];
    Diósi AIP(06)qp [QED];
    Derakhshani PLA(13)-a1304 [Newtonian theory of semiclassical gravity];
    Pearle a1404-wd,
    PRD(15)-a1412 [scalar field, relativistic model];
    Pearle a1610-in [for photons].
  @ Cosmology: Das et al a1302-MG13;
    Martin & Vennin a1906,
    a1912-in,
    comment Bengochea et al a2006 [and the cmb];
    Martin & Vennin a2103 [collapse operator].
  @ Astrophysics: 
    Tilloy & Stace a1901,
    comment Adler et al PRD(19)-a1901 [test with neutron stars];
    > s.a. black-hole information.
  @ Other types of systems: Bassi JPA(05)qp/04 [single free particle];
    Pearle PRA(05)qp [quasirelativistic quasilocal model];
    Laloë et al PRA(14)-a1409 [trapped ultra-cold atoms];
    Diósi PRL(15)-a1411 [classical mechanical oscillators];
    Tilloy a1910-ch [on finite-dimensional Hilbert spaces].
  @ Other phenomenology: Nimmrichter et al PRA(11) [tests with matter-wave interferometry];
    Lochan et al PRD(12) [constraints from cmb spectral distortions];
    Carlesso et al NJP(18)-a1708 [non-interferometric test];
    Mishra et al a1807 [estimates for bulk heating experiments];
    Singh ZfN-a1806 [and emergence of spacetime].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 24 may 2021