|  Hartle-Hawking No-Boundary Quantum Cosmology | 
In General
  > s.a. cosmological-constant problem; quantum cosmology.
  * Idea: Choose the set of histories C to
    consist of Euclidean four-geometries with no past boundary (empty beginning and smooth fields) in
\(\Psi[g_{ij}, t, \phi]\):= ∫C \(\cal D\)gij \(\cal D\)φ exp{−I[gij, φ]} .
  * Limitations: 1990, Thought
    to give too little inflation (but see Grishchuk & Rozhansky).
  * Susskind's challenge: The
    Hartle-Hawking no-boundary proposal should most likely lead to a nearly empty
    large de Sitter universe, rather than to early rapid inflation; Even if one
    adds the condition of observers, they are most likely to form from quantum
    fluctuations in de Sitter and therefore not see the structure that we observe.
  @ General references:
    Hartle & Hawking PRD(83);
    Hawking NPB(84),
    PS(87),
    in(89);
    Laflamme & Shellard PRD(87);
    Louko CQG(88);
    Barvinsky & Kamenshchik CQG(90);
    Grishchuk & Rozhansky PLB(90) [and conditions for inflation];
    Halliwell & Hartle PRD(90);
    Wu 93;
    Coule MPLA(95)gq/94 [and the cosmological constant];
    Page JCAP(07)ht/06 [re Susskind's challenge];
    Wu MPLA(11) [rev];
    Feldbrugge et al PRL(17)-a1705 [semi-classical description untenable];
    Feldbrugge et al PRD(18)-a1708 [problem];
    Bojowald & Brahma PRL(18)-a1810
      [proposal rescued by dynamical signature change in loop quantum cosmology];
    Halliwell et al PRD(19)-a1812 [without functional integrals];
    Di Tucci & Lehners PRL(19)-a1903 [as a path integral with Robin boundary conditions];
    Alexander et al CQG(21)-a2012 [generalization beyond minisuperspace];
    Partouche et al a2105 [gauge fixing and field redefinitions].
  @ In Lorentzian quantum cosmology: 
    Diaz Dorronsoro et al PRD(17)-a1706;
    Di Tucci et al PRD(19)-a1911.
  @ And spacetime topology:
    Wu PRD(85);
    Gurzadyan & Kocharyan JETP(89);
    Gibbons & Hartle PRD(90);
    Gibbons CQG(98);
    Anderson et al CQG(04)gq/03 [peaks from sum over topologies].
  @ And spacetime anisotropy:
    Hawking & Luttrell PLB(84);
    Duncan & Jensen NPB(89);
    Fujio & Futamase PRD(09)-a0906 [emergence of classical mixmaster universe];
    > s.a. CMB anisotropies.
Specific Theories and Models
  @ 2+1 gravity:
    Carlip PRD(92) [approximations to action];
    Carlip CQG(05)gq [real tunneling geometries].
  @ In other theories: Kapetanakis et al NPB(95) [Einstein-Yang-Mills];
    Csordás & Graham PLB(96) [supersymmetric];
    Sarangi & Tye ht/06 [string cosmology];
    Hawking & Hertog PRD(06)
    + pw(06)jun [and string landscape, top-down];
    Hwang et al CQG(12)-a1107 [scalar-tensor gravity];
    Sasaki et al CQG(13)-a1307 [massive gravity];
    Battarra & Lehners JCAP(14)-a1407 [ekpyrotic and cyclic cosmologies];
    Jonas & Lehners PRD(20)-a2008 [and higher-order quantum gravity corrections].
  @ In specific approaches:
    Glaser & Surya a1410 [2D causal set quantum gravity];
    Dhandhukiya & Sahlmann PRD(17)-a1608,
    Brahma & Yeom PRD(18)-a1808 [lqg/lqc].
  @ Specific model spacetimes: Janssen et al PRD(19)-a1904 [biaxial Bianchi IX minisuperspace].
  @ Real tunneling solutions:
    Carlip CQG(93)gq;
    Embacher GRG(96) [and spacetime dimensionality].
  @ Perturbations: 
    Green & Unruh gq/02;
    Hartle et al PRD(10) [single scalar field perturbations, eternal inflation];
    Diaz Dorronsoro et al PRL(18)-a1804 [damping, stable to perturbations];
    Feldbrugge et al a1805 [inconsistencies];
    Di Tucci & Lehners PRD(18)-a1806 [unstable].
  @ Related topics: Hawking & Wu PLB(85) [with massive scalar or R2, numerical];
    Page CQG(90) [age of universe],
    PRD(97)gq [size of the universe];
    de Oliveira & Soares PRD(99) [homoclinic structure];
    Clunan a0704 [and effective potential];
    Hartle et al PRD(08)-a0802,
    PRL(08)-a0711 [semiclassical];
    Rajeev et al a2101
      [bouncing model analogue and Lorentzian path-integral representation].
  > Related topics: see AdS spacetime;
    arrow of time; gravitational instantons;
inflation and planck-scale physics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 11 may 2021