|  Variation of Newton's Gravitational Constant | 
In General > s.a. cosmic microwave background;
  gravity theories; variation of constants
  [and Milgrom's a0].
  * History: 1937, Dirac
    conjectured that G changes in time, based on the large-number
    hypothesis; The idea was picked up by Pascual Jordan, who tried to develop
    a modified general relativity based on it, with G as a scalar field;
    G(t) is also predicted by Mach's principle.
  * Theoretical motivation:
    The constant G becomes a function of dyamical variables in theories
    with extra dimensions such as Kaluza-Klein theory, or 4D scalar-tensor
    theories with a dilaton-like scalar field, such as Brans-Dicke theory.
  @ General references: Dirac Nat(37)feb;
    Jordan 52;
    Wesson PT(80)jul;
    Damour et al PRL(88);
    Accetta et al PLB(90);
    Schücking PT(99)oct [Jordan's proposal];
    Moss et al IJMPD(10)-a1004-GRF [conceptual];
    Dungan & Prosper AJP(11)jan [and cosmology];
    Kragh 16 [hist].
  @ Brans-Dicke theory: García-Bellido et al PRD(94)ap/93 [inflationary];
    Carneiro IJMPD(05)gq [and coincidence];
  @ Other scalar-tensor: Torres MPLA(99)gq [and astrophysics];
    Bronnikov et al G&C(02)gq;
    Rubano & Scudellaro GRG(05)ap/04 [and the cosmological constant, renormalization];
    Clifton & Barrow PRD(06)gq;
    Wetterich PRD(14)-a1308 [variable gravitational constant (cosmon), and consequences for cosmology];
    Ooba et al PTEP(17)-a1702 [cosmological constraints].
  @ From extra dimensions:
    Mansouri et al PLA(99)gq [varying d];
    Mbelek & Lachièze-Rey G&C(02)gq [Kaluza-Klein and spatial variations?];
    Loren-Aguilar et al CQG(03)ap;
    Dehnen et al G&C(05).
  @ And Mach's principle:
    Unzicker gq/03 [theory];
    Unzicker & Fabian gq/06
      [solar system tests and constraints];
    Darabi ASS(12)-a0802 [cosmic acceleration and Λ].
  @ Other theory: Sidharth NCB(00)ap/99;
    Mbelek & Lachièze-Rey A&A(03)gq/02 [and α];
    MacGibbon a0706 [bounds from black-hole entropy];
    Demir FP(09) [and vacuum energy];
    Finster & Röken a1604 [general relativity with dynamical gravitational coupling];
    Perivolaropoulos PRD(17)-a1611 [sub-millimeter spatial oscillations];
    Paliathanasis EPJC(18)-a1806 [and the cosmological constant, dynamical analysis].
  > Other theory:
    see action for general relativity; cosmological
    constant; general relativistic cosmology;
    MOG; spherical symmetry in general relativity.
And Observations > s.a. tests of general relativity.
  * Status: 2003, Presently
    the most accurate method to test for the constancy of G is
    lunar laser ranging.
  * Experimental bounds:
    Planetary observations give G−1
    dG/dt = (2 ± 4) and (−2 ± 10) ×
    10−12 yr−1;
    Notice that (Hubble time)−1
    ~ 10−10 yr−1;
    Other bounds come from the variation of the period of PSR 1913+16;
    2004, G−1 dG/dt = (4 ± 9)
    × 10−13 yr−1.
  @ Observational constraints: Gaztañaga et al PRD(02)ap/01 [from supernovas];
    Copi et al PRL(04)ap/03,
    Clifton & Barrow PRD(05) [nucleosynthesis];
    Umezu et al PRD(05) [cosmological];
    Bisnovatyi-Kogan IJMPD(06)gq/05 [from binary pulsars];
    Krastev & Li PRC(07)nt [terrestrial nuclear lab data];
    Chan & Chu PRD(07),
    Galli et al PRD(09) [from cmb anisotropies];
    Martins et al PRD(10)-a1001 [correlated variations of α and G];
    Nesseris et al JCAP(11)-a1107 [growth of structure];
    Pitjeva & Pitjev SSR(12)-a1008 [planets and spacecraft];
    Iorio CQG(11)-a1108 [constraints on spatial anisotropy];
    Zhu et al ApJ(15)-a1504 [from 21-year timing of pulsar binary J1713+0747, consistent with no change];
    Masuda & Suto PASJ(16)-a1602 [from transiting planets];
    Wang & Chen EPJC(20)-a2004 [cmb data];
    Dai PRD(21)-a2103 [from local gravitational acceleration  measurements].
  @ Gravitational-wave observations: Yunes et al PRD(10)-a0912;
    Vijaykumar et al PRL(21)-a2003 [binary neutron stars].
  @ Sinusoidal variation: Schlamminger et al PRD(15)-a1505 [analysis];
    Iorio CQG(16)-a1506 [G does not vary sinusoidally in time as reported];
    Desai EPL(16)-a1607 [using frequentist model comparison tests].
  @ Other phenomenology: Amendola et al ap/99 [supernovae and acceleration];
    Nordtvedt CQG(03) [and lunar laser ranging];
    Benvenuto et al PRD(04) [white dwarfs];
    in Williams et al PRL(04)gq;
    Umezu et al PRD(05)ap [cosmological bounds];
    Tomaschitz IJTP(05) [and solar luminosity];
    Jofré et al PRL(06)ap [and neutron star equilibrium];
    García-Berro et al IJMPD(06) [from supernova Hubble diagram],
    JCAP(11)-a1105 [from white dwarf stars];
    Sidharth FPL(06) [cosmology and Solar System];
    Tartaglia & Radicella a0801 [luminosity of type Ia supernovae];
    Li IJMPD(09) [evolution of binary-star orbits];
    Córsico et al JCAP(13)-a1306 [pulsating white dwarfs];
    Bel a1402 [and Earth and Moon orbital anomalies].
  @ Inhomogeneities: Clifton et al MNRAS(05)gq/04.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 apr 2021