|  Issues and Methods in Numerical General Relativity | 
In General > s.a. computational
  physics; numerical relativity [gauge choice, constraints].
  * Form of the equations:
    2008, The two main formulations used to produce well-posed initial-value
    problems are the BSSN and the harmonic formulations.
  @ General references: Alcubierre et al CQG(04)gq/03 [testbeds];
    Neilsen et al LNP(06)gq/04 [examples];
    Shinkai JKPS(09)-a0805-ln;
    Zumbusch CQG(09)-a0901;
    Bona et al PRD(10)-a1008 [action principle].
  @ Boundary conditions: Sarbach JPCS(07)-a0708 [absorbing];
    > s.a. numerical relativity.
  @ Characteristic problem:
    Stewart & Friedrich PRS(82);
    Corkill & Stewart PRS(83) [2 Killing vectors, vacuum];
    Bishop CQG(93);
    Winicour PTPS(99)gq [binary black holes],
    gq/00-proc [waves];
    Barreto et al PRD(05)gq/04 [Einstein-Klein-Gordon];
    Winicour LRR(05)gq,
    LRR(09),
    LRR(12) [rev];
    Kreiss & Winicour CQG(11)-a1010 [null-timelike boundary problem];
    van der Walt & Bishop PRD(12) [and observational cosmology].
  @ Cauchy + characteristic:
    Clarke & d'Inverno CQG(94);
    Clarke et al PRD(95);
    d'Inverno & Vickers PRD(96),
    PRD(97) [axial symmetry];
    Papadopoulos & Laguna PRD(97)gq/96 [Einstein-Klein-Gordon];
    Dubal et al PRD(98) [spherical + fluid];
    Bishop et al gq/98-in;
    d'Inverno et al CQG(00)gq;
    Szilágyi PhD(00)gq;
    Winicour LRR(01)gq.
  @ Cauchy + boundary: Stewart CQG(98);
    Szilágyi & Winicour PRD(03)gq/02;
    Frittelli & Gómez PRD(03) [boundary conditions];
    Nagy & Sarbach CQG(06)gq [variational problem for lapse];
    Babiuc et al PRD(06) [harmonic];
    Winicour CQG(12) [boundary conditions, rev].
  > Related topics:
    see initial-value formulation; models
    [collapse, binaries, cosmology, astrophysics]; regge calculus.
Stability and Hyperbolicity > s.a. einstein's equation [various forms].
  * Idea: To ensure stability
    of the evolution, a common strategy involves using symmetric hyperbolic
    formulations of Einstein's equation.
  @ Stability: Alcubierre et al PRD(00)gq/99 [ADM];
    Szilágyi et al PRD(00)gq/99;
    Frittelli & Gómez JMP(00)gq [ill-posedness];
    Miller gq/00/PRD [ADM vs CT];
    Laguna & Shoemaker CQG(02)gq [conformal-traceless];
    Calabrese et al PRD(02)gq,
    PRD(02)gq,
    JCP(06)gq/05;
    O'Shaughnessy PRD(03)gq;
    Lehner et al CQG(06)gq/05 [higher accuracy].
  @ Hyperbolic form: Bona et al PRL(95)gq/94,
    PRD(97)gq [first-order];
    Scheel et al PRD(97)gq [black holes];
    Yoneda & Shinkai CQG(01)gq/00;
    Shinkai & Yoneda gq/01-proc [connection variables];
    Buchman & Bardeen PRD(03)gq [tetrad variables];
    Bona & Palenzuela PRD(04)gq [and dynamical shift].
  @ Symmetric hyperbolicity: Tiglio et al PRD(04)gq/03 [3D simulations].
Other Approaches and Methods
  > s.a. Symplectic Integrators.
  @ Conformal form:
    Shibata & Nakamura PRD(95);
    Frauendiener PRD(98)gq/97,
    PRD(98)gq/97;
    Baumgarte & Shapiro PRD(99)gq/98;
    Alcubierre et al PRD(00)gq;
    Lehner et al gq/00 [causal differencing excision];
    Gourgoulhon & Novak IJMPA(02).
  @ BSSN formulation: Sarbach et al PRD(02)gq;
    Yoneda & Shinkai PRD(02)gq;
    Beyer & Sarbach PRD(04)gq;
    Brown CQG(08)-a0705 [spherical];
    Gentle IJMPD(10)-a0707 [nature of equations].
  @ In higher dimensions: Yoshino & Shibata PRD(09)-a0907;
    Zilhão a1301-PhD;
    Sperhake IJMPD(13)-a1301;
    Witek IJMPA(13)-a1308-ln;
    Witek et al PRD(14)-a1406 [comparison of two codes].
  @ Algebraic computing: Husa & Lechner gq/03-proc;
    > s.a. computation.
  @ Connection variables: Salisbury et al CQG(94)gq;
    Shinkai & Yoneda gq/97-MG8,
    PRD(99)gq,
    CQG(00)gq [Ashtekar variables].
  @ Spectral methods: Grandclément & Novak LRR(09)-a0706;
    Amorim et al CQG(09) [Gowdy spacetimes].
  @ Other formulations and techniques: Teukolsky PRD(00)gq/99 [iterated Crank-Nicholson method];
    Sperhake PhD(01)gq/02 [non-linear techniques];
    Jansen et al PRD(06)gq/03 [stability, AA vs ADM & BSSN formulations];
    Calabrese PRD(05)gq/04 [first- vs second-order, black holes];
    Alic et al PRD(07)-a0706 [finite-volume methods];
    Paschalidis PRD(08) [mixed hyperbolic–second-order-parabolic];
    Garrett a0902 [direct finite differencing];
    Mongwane GRG(15)-a1504 [mesh refinement algorithms];
    Hamilton PRD(17)-a1611 [covariant Hamiltonian tetrad approach];
    Bieri et al CQG(20)-a1905 [with no outer boundary condition].
  @ Related topics: Stewart PRS(89) [Bondi mass];
    Arbona et al PRD(99)gq;
    Papadopoulos & Sopuerta PRD(02)gq/01 [background geometry];
    Bona et al PRD(02)gq [evolution systems],
    gq/02/PRL [extended constraint-free system];
    Cordero-Carrión et al PRD(08);
    Jasiulek CQG(09)-a0906 [quasilocal invariants];
    > s.a. differential forms [discrete]; models
      in numerical relativity [including adaptive mesh].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 mar 2020