|  Gaussian Functions | 
Gaussian Function / Normal Distribution
  > s.a. fourier transform.
  $ Normalized version:
F(x0, σ) = (2πσ2)−1/2 exp{−(x−x0)2 / 2σ2} ;
    In D dimensions, F(x0, σ)
    = (2πσ2)−D/2
    exp{−(x−x0)2
    / 2σ2}.
  @ Generalizations: 
    Coftas a1512,
    a1912 [Gaussians defined on a finite set].
  > Online resources:
    see Wikipedia page.
Gaussian Integrals
  * Integrals of simple powers:
    \[ \def\dd{{\rm d}} \def\ee{{\rm e}} \def\half{{\textstyle{1\over2}}}
    \int_0^\infty \dd x\,x\,\ee^{-x^2/a^2} = {a^2\over2}\;,\quad
    \int_0^\infty \dd x\,x^3\,\ee^{-x^2/a^2} = {a^4\over2}\;, \]
\[ \int_0^\infty \dd x\,x^{2n}\,\ee^{-x^2/a^2} = {\sqrt{\vphantom{1}\pi}\,a\over2}\,{(2n-1)!!\over2^n}\,a^{2n}\;. \]
* Integrals of even powers:
    \[ \int_{-\infty}^\infty
    \dd x\,\ee^{-(x-\bar x)^2/a^2} = \sqrt{\vphantom{1}\pi}\,a\;,\quad
    \int_{-\infty}^\infty \dd x\,x^2\,\ee^{-(x-\bar x)^2/a^2}
    = \sqrt{\vphantom{1}\pi}\,a\,\big(\half a^2+\bar x^2\big)\;, \]
    \[ \int_{-\infty}^\infty \dd x\,x^4\,\ee^{-(x-\bar x)^2/a^2} 
    = \sqrt{\vphantom{1}\pi}\,a\,\big({\textstyle{3\over4}}a^4+3 \bar x^2a^2+\bar x^4\big)\;. \]
  * Remark: More can be
    obtained by taking derivatives with respect to a; It may be
    possible to find a recursion formula.
  @ References: Khrennikov qp/05 [integrals of analytic functionals on infinite-dimensional spaces].
  > Online resources:
    see Wikipedia page.
Generalized Versions
  * Complex exponent:
    By doing a contour integration over a pie-shaped wedge one can show that
\(\int_{-\infty}^\infty\) dx exp{−(a + ib)x2} = \(\sqrt\pi\) (\(a^2+b^2\))−1/4.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 dec 2019