|  Isolated and Dynamical Horizons | 
Isolated Horizons > s.a. laws of black-hole thermodynamics;
  multipoles; numerical relativity;
  quasilocal general relativity.
  * Relationships:
    A Killing horizon is always an isolated horizon.
  @ General references: Ashtekar et al CQG(99)gq/98,
    ATMP(00)gq/99 [phase space],
    CQG(00)gq/99 [mechanics],
    AdP(00)gq/99,
    PRL(00)gq,
    CQG(02)gq/01 [geometry];
    Date CQG(00)gq [spin coefficients];
    Ashtekar et al ATMP(02)gq [2+1];
    Gourgoulhon & Jaramillo PRP(06)gq/05,
    Jaramillo IJMPD(11) [3+1 view];
    Engle & Liko a1112-ch [rev];
    Lewandowski et al a1602-conf [and near-horizon geometries].
  @ With matter: Ashtekar & Corichi CQG(00)gq/99 [dilaton];
    Corichi et al PRD(00)gq [Einstein-Yang-Mills theory];
    Ashtekar et al CQG(03)gq [scalar field];
    Corichi et al PRD(06)gq/05 [hairy Einstein-Higgs black holes];
    Liko & Booth CQG(08)-a0712 [Einstein-Maxwell-Chern-Simons theory in odd D ≥ 5];
    Liko PRD(09)-a0901 [p-form matter fields];
    Chatterjee AP(11)
      [non-minimally coupled scalar fields, Holst action];
    Krishnan CQG(12)-a1204 [near-horizon geometry].
  @ Entropy: Ashtekar & Corichi CQG(03)gq;
    Basu et al PRD(10)-a0907;
    Engle et al PRD(10)-a1006;
    Pérez & Pranzetti Entr(11)-a1011 [SU(2)-invariant phase space];
    Ghosh & Pérez PRL(11)-a1107 [Planck scale and universal horizon temperature];
    Diaz-Polo & Pranzetti Sigma(12) [in lqg];
    Zhang CQG(14) [from the surface term in the gravitational action].
  @ Hair: Corichi & Sudarsky gq/00-MG9;
    Mao et al CQG(17)-a1606 [soft hair, implanted by electromagnetic fields].
  @ Other properties: Date CQG(01)gq [and Killing horizons];
    Dreyer et al PRD(03)gq/02 [numerical];
    Lewandowski & Pawłowski CQG(03)gq/02  [uniqueness];
    Pawłowski et al CQG(04)gq/03 [spacetime foliations];
    Booth & Fairhurst PRD(08)-a0708 [extremality];
    Lewandowski & Pawłowski CQG(14)-a1404 [neighborhoods, radial expansion and stationarity].
  @ Quantum:
    Ashtekar et al CQG(05)gq/04 [with distortion and rotation];
    Bojowald & Swiderski PRD(05) [spherical];
    Engle JPCS(05)gq [distorted, rotating, entropy];
    Beetle & Engle CQG(10)-a1007 [generic horizons];
    Engle & Beetle JPCS(12)-a1112 [entropy];
    Majhi CQG(14)-a1205 [microcanonical entropy];
    Pithis PRD(13)-a1208 [quantum states and entropy];
    Majhi CQG(13) [stability],
    PRD(13),
    AHEP(16)-a1312 [thermodynamics];
    Bodendorfer CQG(14)-a1402 [entanglement entropy and horizon entropy in loop quantum gravity];
    Ghosh & Pranzetti NPB(14)-a1405 [cft/gravity duality];
    Eder & Sahlmann a1801 [charged isolated horizons];
    > s.a. quantum black holes.
Specific Types of Spacetimes
  > s.a. born-infeld theory; Skyrmions.
  @ Rotating: Ashtekar et al PRD(01)gq;
    Wang & Huang a1505 [symplectic form, entropy].
  @ Kerr geometries: Lewandowski & Pawłowski IJMPD(02)gq/01;
    Röken a1303 [connection variables]. 
  @ Asymptotically AdS: Ashtekar et al CQG(07)gq/06 [covariant phase space, first law];
    Booth & Liko PLB(08)-a0808 [supersymmetric].
  @ Higher-dimensional spacetimes: Korzyński et al CQG(05)gq/04;
    Liko & Booth CQG(07)-a0705 [in Einstein-Gauss-Bonnet gravity];
    Bodendorfer et al CQG(14)-a1304 [in terms of new variables].
  @ Other types of spacetimes: Lewandowski CQG(00)gq/99 [vacuum];
    Senovilla JHEP(03)ht [with no trapped surfaces].
Dynamical Horizons
  > s.a. black-hole phenomenology [evolution]; constraints
  in general relativity; numerical relativity.
  @ General references: Ashtekar & Krishnan PRL(02)gq,
    PRD(03)gq [fluxes, laws],
    LRR(04)gq [review, applications];
    Hayward PRL(04)gq [first law];
    Ashtekar & Galloway ATMP(05)gq [uniqueness, isometries];
    Andersson et al PRL(05) [local existence];
    Bartnik & Isenberg CQG(06)gq/05 [spherical, nasc];
    Hayward gq/06 [conservation laws];
    Booth & Fairhurst PRD(08)-a0708 [extremality].
  @ Specific spacetimes: Sawayama PRD(06)gq/05 [evaporating Vaidya black hole].
  @ Related topics: Di Criscienzo & Vanzo EPL(08)-a0803 [fermion tunneling];
    Nielsen & Yoon CQG(08) [surface gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 jan 2018