|  Bell's Theorem and Inequalities – Applications and Generalizations | 
Applications, Phenomenology and Tests
  > s.a. optics; wave-function collapse [gravity-induced].
  @  General references: Flitney et al PLA(09)-a0803 [and game theory];
    Chen & Deng PRA(09)-a0808 [for qubits, from the Cauchy-Schwarz inequality];
    Brukner & Żukowski a0909-ch [and quantum communication];
    Durham AIP(12)-a1111 [and the second law of thermodynamics].
  @ Classical models:
    Barut & Meystre PLA(82);
    Palmer PRS(95) [spin];
    Morgan JPA(06)cm/04 [random fields];
    Matzkin JPA(08)qp/07,
    PRA(08)-a0709 [classical violation from random interactions];
    Willeboordse a0804;
    Ferry & Kish FNL(10)-a1008,
    Gerhardt et al PRL(11)-a1106 [faking the violation with classical states];
    Khrennikov a1111,
    JPCS(14)-a1404;
    Faber a1907
      [violation of Mermin's version in a classical statistical model];
    > s.a. spin.
  @ Particle physics and cosmology:
    Benatti & Floreanini hp/97 [correlated Ks];
    O'Hara ht/97 [particle couplings];
    Campo & Parentani PRD(06)ap/05 [inflationary spectra];
    Gallicchio et al PRL(14) [proposed test with cosmic photons];
    Hiesmayr a1502-conf;
    Maldacena FdP(16)-a1508 [inflationary model with a Bell inequality violating observable];
    Choudhury et al EPJC(17)-a1607 [massive particle creation, inflation],
    Univ(17)-a1612 [early-universe violation];
    Kanno & Soda PRD(17)-a1705 [in inflation].
  @ Other tests: Cabello a1303
      [experimental test for higher-than-quantum inequality violations];
    Hofer et al PRL(16)-a1506 [in electromechanics];
    news PT(16)jan [two loopholes closed at once];
    > s.a. EPR paradox and experiments.
Other Results and Generalizations
  > s.a. Leggett Inequalities;
  Leggett-Garg Inequality.
  * Gisin's theorem:
    For any pure bipartite entangled state, there is violation of Bell-CHSH
    inequality revealing its contradiction with local realistic model; A
    similar result holds for three-qubit pure entangled states.
  @ Single particle:
    Tan et al PRL(91),
    Hardy PRL(94) [photon];
    Basu et al PLA(01) [spin-1/2].
  @ Multipartite:
    Mermin PRL(90),
    Chen et al PRA(08) [3-particle];
    Cabello PRA(02) [n spin-s particles];
    Laskowski et al qp/03;
    Shchukin & Vogel PRA(08) [and algebras of quaternions and octonions].
  @ For mixed states:
    Popescu PRL(95).
  @ Bounds on violations: Cabello PRL(02) [beyond Cirel'son];
    Filipp & Svozil AIP(05)qp/04 [method];
    Bohata & Hamhalter JMP(09);
    Palazuelos a1206 [largest attainable violation];
    > s.a. quantum correlations.
  @ Entropic Bell inequalities: Cerf & Adami PRA(97)qp/96;
    Durham qp/07-in,
    a0801.
  @ Without inequalities:
    Cabello PRL(01),
    PRL(03)qp,
    PRL(03)qp,
    comment Marinatto PRL(03)qp,
    comment Cabello PRL(04)qp;
    Cabello FP(05)qp/04;
    Greenberger et al PRA(08),
    PRA(08)qp/05 [GHZ-type, using inefficient detectors];
    Broadbent et al NJP(06)qp/05 [logical structure];
    Ghirardi & Marinatto PLA(08)-a0711;
    Choudhary & Agrawal IJQI(16)-a1610 [rev];
    > s.a. Hardy's Paradox.
  @ Gisin's theorem: Choudhary et al PRA(10)-a0901 [for three qubits].
  @ In more general settings: 
    Panković qp/05 [general relativistic];
    Loubenets FP(17)-a1612 [general non-signaling case].
  @ Other generalizations:
    Braunstein & Caves PRL(88),
    AP(90) [information-theoretic];
    Gočanin et al PRA(20)-a2001 [for trajectories].
  @ Related topics:
    Franson PRL(89);
    Stapp PRA(94);
    Peres FP(99)qp/98;
    Razmi & Golshani qp/98;
    Vervoort EPL(00)qp [non-linear systems];
    Collins et al PRL(02)qp/01 [high dimensionality];
    Reid qp/01,
    qp/01 [continuous outcomes];
    Larsson PRA(04)qp/03 [position];
    Clover qp/04 [time ordering of measurements];
    Christian a0806 [macroscopic domain];
    Cabello PRL(10)-a0910 [with local violation];
    Fedrizzi et al PRL(11)-a1011 [in time];
    Fritz NJP(12)-a1206 [without free will];
    Aravinda & Srikanth a1211
      [Bell-type inequality encompassing both the spatial and temporal variants, and criterion for non-classicality];
    Borges et al PRA(12) [continuous angular variables];
    Harper et al PRA(17)-a1608 [causal networks and quantum correlations];
    Szangolies et al PRL(17)-a1609
      [inequalities free from the detection loophole, device-independent bounds on detection efficiency];
    Te'eni et al a1902 [new multiplicative class];
    Cabello a1904
      [generalized Bell non-locality equivalent to Kochen-Specker contextuality];
    Tavakoli & Gisin Quant(20)-a2001 [and Platonic solids].
  > Related topics: see measure theory
    [quantum measure analog]; Penrose Dodecahedron; relativistic
    quantum mechanics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 12 aug 2020