Holonomy |
In General > s.a. connection.
* Idea: In a fiber bundle with
a connection A, the change of an element in the fiber when transported
along the lift \(\hat l\) of a closed curve l in the base space,
l (1) = l (0)
HA(l); It depends
on the choice of lifting or gauge.
* Properties: It allows
to reconstruct A up to gauge; For the product of two loops,
HA(l \(\circ\)
m) = HA(l)
HA(m).
* For a trivial bundle: We can
write a connection form Aa, and, if
Fk = dAk −
g Ckij
Ai ∧ Aj,
HA(l) = P exp ∫l Aa(x) dxa = −(ig/\(\hbar\)c) ∫l Amk Tk dxm = 1 + (ig/2\(\hbar\)c) Fkmn Tk dσmn + h.o.t.
* In general relativity: Using the generators of the Poincaré group, it is
He,Γ = P exp{−(i/\(\hbar\)) ∫l (eam Pa + \(1\over2\)Γmab Mab) dxm } = 1 + (i/2\(\hbar\)) (Qamn Pa + \(1\over2\)Rabmn Mab) dσmn ,
where Qa = dea
+ Γab
∧ eb is the torsion, and is observable for
open l too [@ Anandan in(93)].
@ And connections: Chi et al IM(96)dg/95;
Díaz-Marín & Zapata JMP(10)-a1101 [holonomies and bundle structures];
Rosenstock & Weatherall a1504
[categorical equivalence between generalized holonomy maps and principal connections];
Cekić & Lefeuvre a2105 [results on holonomy inverse problem].
@ Of the Levi-Civita connection: Klitgaard et al CQG(20)-a2004 [3D and 4D relations with curvature integrals].
@ Other special cases: Alfaro et al JPA(03) [non-abelian, triangular paths];
Mendes mp/05 [U(1)].
> Online resources:
see MathWorld page;
Wikipedia page.
Holonomy Groups and Algebras
@ Holonomy groups:
McInnes JMP(93) [classification, for Riemannian manifolds],
JMP(93) [Einstein manifolds],
JPA(97) [from curvature],
CMP(99) [spin holonomy of Einstein manifolds];
Hall & Lonie CQG(00)gq/03
[and different Tmns];
Boya RACZ(06)mp [intro for physicists].
@ Holonomy algebras: Abbati & Manià JGP(02)mp [spectra];
Okołów & Lewandowski CQG(03)gq,
CQG(05) [representations];
Aastrup & Grimstrup CMP(06)ht/05 [spectral triple from non-commutative algebra of loops];
Lewandowski et al CMP(06)gq/05 [representations];
Rios gq/05 [Jordan GNS];
Gryc JMP(08) [manifolds with boundaries];
Aastrup et al JNCG(09)-a0802,
CMP(09)-a0807,
CQG(09)-a0902-conf [and lqg],
a0911 [emergent Dirac Hamiltonians];
Dziendzikowski & Okołów CQG(10)-a0912 [diffeomorphism-invariant states];
Aastrup & Grimstrup a1709 [representations],
a1709 [quantum gravity and quantum Yang-Mills theory].
@ Lorentzian: Galaev DG&A(05)m.DG/03 [D < 12, algebras];
Hernandez et al JHEP(04)ht [and supersymmetry, various dimensions];
Atkins BAusMS(06)mp [reducibility, and existence of metrics];
Galaev IJGMP(06),
JGP(10);
Leistner JDG(07) [classification];
Galaev LMP(15)-a1110,
RMS(15)-a1611 [holonomy algebra of an arbitrary Lorentzian manifold];
> s.a. tensor fields.
Variations, Generalizations > see Wilson Loop [on supermnaifolds].
* Generalized holonomy:
A homomorphism \(\cal L\)0 \(\mapsto\) G,
where \(\cal L\)0 is the loop group of a manifold.
@ General references: Kozameh & Newman PRD(85) [differential holonomies];
Lewandowski et al JMP(93);
Tavares JGP(98) [generalized];
Mackaay & Picken AiM(02)m.DG/00 [abelian gerbes];
Gubser ht/02-ln [special holonomy and strings];
Lupercio & Uribe JGP(06) [gerbes over orbifolds].
@ Higher holonomy invariants: Zucchini IJGMP(16)-a1505,
IJGMP(16)-a1505 [in higher gauge theory].
And Physics > s.a. geometric phase;
Wilson Loop [a basic variable in some formulations of gauge theory].
* Quantum holonomy theory: A candidate
for a fundamental theory based on gauge fields and non-commutative geometry.
@ In quantum theory: Cheon & Tanaka EPL(09)-a0807,
Tanaka & Cheon AP(09)-a0902 [unified formulation].
@ Quantum holonomy theory:
Aastrup & Grimstrup IJMPA(16)-a1404,
FdP(16)-a1504,
CQG(16)-a1602;
Grimstrup CQG+(16);
Aastrup & Grimstrup a1810 [fermionic sector];
> s.a. canonical approaches to quantum gravity.
@ And spacetime: Hall GRG(95);
Bezerra & Letelier JMP(96) [conical singularities];
Rothman et al CQG(01)gq/00 [Schwarzschild-Droste geometry];
Carvalho & Furtado GRG(07) [FLRW metrics];
Viennot JMP(10)-a1003 [non-abelian geometric phases and gauge theory of gravity].
@ Holonomy of SU(2) spin connection: Jacobson & Romano CMP(93)gq/92
[holonomy group classification and conservation].
> Specific field theories: see gauge theory;
loop gravity; quantum gravity in the connection representation
[quantum holonomy theory].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 14 may 2021