Chaos in Field Theories and Gravitational Systems  

In General > s.a. chaos / quantum phase transitions.
@ General references: Latora & Bazeia IJMPA(99) [2 scalar fields]; Salasnich JMP(99) [homogeneous]; Brummitt & Sprott PLA(09) [the simplest chaotic partial differential equations]; > s.a. yang-mills gauge theory.
@ In quantum field theory: Matinyan & Müller FP(97)ht/96, PRL(97) [quantum fluctuations]; Cvitanović PhyA(00)n.CD; Berg et al hl/00-conf [gauge theories]; Kuvshinov & Kuzmin PLA(02)ht [criterion]; Beck 02.

In Yang-Mills Theories > s.a. quantum chaos.
@ General references: Baseyna et al JETP(79); Matinyan et al JETP(81); Chirikov & Shepelyanskii JETP(81), SJNP(82); Kawabe & Ohta PRD(90), PRD(91); Kawabe PLB(92); Wellner PRL(92); Biró et al 95; Kawabe & Ohta PLB(94); Nielsen et al cd/96, cd/96-conf; Salasnich MPLA(97)qp [quantum]; Casetti et al JPA(99)cd/98 [U(1) lattice gauge theory]; Biró et al NPPS(00)hp/99; Bambah et al ht/02-proc; Narayan & Yoon a1903 [3D Chern-Simons higher-spin gravity].
@ Integrability: Witten JGP(92); Inami et al NPB(06)ht [non-integrability of self-dual Yang-Mills-Higgs theory]; > s.a. self-dual solutions.
@ Qantum theories: Salasnich MPLA(97)qp; Matrasulov et al EPJC(05)hp/03 [Yang-Mills-Higgs]; McLoughlin et al a2012 [perturbative super-Yang-Mills].

In Newtonian Gravity and Astronomy > s.a. newtonian orbits [three-body]; non-equilibrium statistical mechanics.
* History: The study of the three-body problem, motivated by questions about the stability of the solar system, started the discipline of chaotic dyamics in a way.
* Results: Results of simulations show that the solar system, while chaotic, is not seriously unstable over time scales of up to billions of years.
@ Reviews / books: Contopoulos in(79); Gurzadyan AIP(03)ap/04 [astrophysics/cosmology]; Regev a0705-en [astrophysics]; Sun & Zhou 15 [celestial mechanics].
@ Chaos / stability of the Solar System: Peterson 93; Lecar et al ARAA(01)ap [rev]; Batygin & Laughlin ApJ(08)-a0804; Laskar a1209-talk; Zeebe ApJ(15)-a1506 [statistically inconclusive results]; Hoffmann et al MNRAS(17)-a1508 [terrestrial planet formation].
@ Solar system objects: Sussman & Wisdom Sci(88)jul [Pluto]; Lissauer RMP(99); Murray & Holman Sci(99)mar-ap [outer solar system]; Haghighipour JMP(02)ap/01 [partial averaging]; Murray & Holman Nat(01)ap; Quillen AJ(03)ap/02 [solar neighborhood]; Hayes nPhys(07)sep-ap [outer solar system]; news S&T(08)apr [Mercury instability]; Batygin & Morbidelli CMDA(11)-a1106 [planetary systems with dissipation]; Shevchenko ApJ(15)-a1405 [around gravitating binaries]; Batygin et al ApJ(15)-a1411 [Mercury, and dynamical structures of planetary systems]; > s.a. solar-system objects [asteroids].
@ Galaxies: Merritt CMDA(96)ap/95-in, Sci(96)jan-ap [elliptical]; Merritt & Valluri ANYAS(98)ap/97; Kandrup in(01)ap/00, ap/02-conf, et al MNRAS(03)ap/02; Jung & Zotos MRC(14)-a1511 [3D galaxy model].

In Relativistic Gravity
@ Gravitating bodies: Addazi a1510 [inside realistic quantum black holes].
> Gravitational field: see quantum cosmology; quantum-gravity phenomenology; string phenomenology.

blue bullet Related topics: see chaos in gravitational-field dynamics; chaotic motion in a gravitational field.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021