Chaos in Field Theories and Gravitational Systems |
In General
> s.a. chaos / quantum phase transitions.
@ General references:
Latora & Bazeia IJMPA(99) [2 scalar fields];
Salasnich JMP(99) [homogeneous];
Brummitt & Sprott PLA(09) [the simplest chaotic partial differential equations];
> s.a. yang-mills gauge theory.
@ In quantum field theory: Matinyan & Müller FP(97)ht/96,
PRL(97) [quantum fluctuations];
Cvitanović PhyA(00)n.CD;
Berg et al hl/00-conf [gauge theories];
Kuvshinov & Kuzmin PLA(02)ht [criterion];
Beck 02.
In Yang-Mills Theories > s.a. quantum chaos.
@ General references: Baseyna et al JETP(79);
Matinyan et al JETP(81);
Chirikov & Shepelyanskii JETP(81), SJNP(82);
Kawabe & Ohta PRD(90),
PRD(91);
Kawabe PLB(92);
Wellner PRL(92);
Biró et al 95;
Kawabe & Ohta PLB(94);
Nielsen et al cd/96,
cd/96-conf;
Salasnich MPLA(97)qp [quantum];
Casetti et al JPA(99)cd/98 [U(1) lattice gauge theory];
Biró et al NPPS(00)hp/99;
Bambah et al ht/02-proc;
Narayan & Yoon a1903 [3D Chern-Simons higher-spin gravity].
@ Integrability: Witten JGP(92);
Inami et al NPB(06)ht [non-integrability of self-dual Yang-Mills-Higgs theory];
> s.a. self-dual solutions.
@ Qantum theories: Salasnich MPLA(97)qp;
Matrasulov et al EPJC(05)hp/03 [Yang-Mills-Higgs];
McLoughlin et al a2012 [perturbative super-Yang-Mills].
In Newtonian Gravity and Astronomy > s.a. newtonian orbits
[three-body]; non-equilibrium statistical mechanics.
* History: The study of the
three-body problem, motivated by questions about the stability of the solar
system, started the discipline of chaotic dyamics in a way.
* Results: Results of simulations
show that the solar system, while chaotic, is not seriously unstable over time
scales of up to billions of years.
@ Reviews / books:
Contopoulos in(79);
Gurzadyan AIP(03)ap/04 [astrophysics/cosmology];
Regev a0705-en [astrophysics];
Sun & Zhou 15 [celestial mechanics].
@ Chaos / stability of the Solar System: Peterson 93;
Lecar et al ARAA(01)ap [rev];
Batygin & Laughlin ApJ(08)-a0804;
Laskar a1209-talk;
Zeebe ApJ(15)-a1506 [statistically inconclusive results];
Hoffmann et al MNRAS(17)-a1508 [terrestrial planet formation].
@ Solar system objects:
Sussman & Wisdom Sci(88)jul [Pluto];
Lissauer RMP(99);
Murray & Holman Sci(99)mar-ap [outer solar system];
Haghighipour JMP(02)ap/01 [partial averaging];
Murray & Holman Nat(01)ap;
Quillen AJ(03)ap/02 [solar neighborhood];
Hayes nPhys(07)sep-ap [outer solar system];
news S&T(08)apr [Mercury instability];
Batygin & Morbidelli CMDA(11)-a1106 [planetary systems with dissipation];
Shevchenko ApJ(15)-a1405 [around gravitating binaries];
Batygin et al ApJ(15)-a1411 [Mercury, and dynamical structures of planetary systems];
> s.a. solar-system objects [asteroids].
@ Galaxies: Merritt CMDA(96)ap/95-in,
Sci(96)jan-ap [elliptical];
Merritt & Valluri ANYAS(98)ap/97;
Kandrup in(01)ap/00,
ap/02-conf,
et al MNRAS(03)ap/02;
Jung & Zotos MRC(14)-a1511 [3D galaxy model].
In Relativistic Gravity
@ Gravitating bodies: Addazi a1510 [inside realistic quantum black holes].
> Gravitational field: see quantum cosmology;
quantum-gravity phenomenology; string phenomenology.
Related topics: see chaos in gravitational-field dynamics; chaotic motion in a gravitational field.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 1 jan 2021