Theory of Cosmological Perturbations |
General Theory
> s.a. perturbations in general relativity [gauge-invariant, gravitational waves].
* Idea: Perturbations are almost always done by expanding the metric around FLRW spacetimes as background.
* Motivation: The evolution of cosmological perturbations
of an averaged FLRW model allows us to make predictions for structure formation
and cosmological radiation backgrounds, that can be checked against observation; The linearized theory
can be trusted because the perturbations of interest are currently of order 1, so they must have been
small in the past (gravity enhances them in time).
* Weinberg theorem: There always exist two adiabatic scalar
modes in which the comoving curvature perturbation is conserved on super-horizon scales.
@ Reviews: Mukhanov et al PRP(92);
Tsagas LNP(02)ap;
Brandenberger LNP(04)ht/03, ht/05-ln;
Straumann AdP(06)hp/05-ln;
Tsagas et al PRP(08)-a0705;
Malik & Matravers CQG(08)-a0804 [concise intro];
Malik & Wands PRP(09)-a0809;
Gorbunov & Rubakov 10 [and inflation];
Lesgourgues a1302-ln.
@ Parametric resonance / amplification:
Finelli & Gruppuso PLB(01)hp/00 [electromagnetic].
@ Correlation functions: Marcori & Pereira JCAP(17)-a1612 [from isometries of the background metric].
@ Related topics: Couch & Torrence CJP(96) [gauging];
Lukash PU(06)ap [tensor and scalar perturbations];
Capozziello et al PS(09)-a0905 [tomographic description];
Allen & Rendall a0906 [initial singularity and late-time asymptotics];
Christopherson PhD-a1106 [applications, higher-order];
Eingorn et al EPJC(15)-a1407 [need for vanishing average perturbations];
Akhshik et al JCAP(15)-a1508 [Weinberg theorem, loopholes].
Related topics:
see averaging; quantum cosmological perturbations.
Higher-Order Perturbations
> s.a. gravitating many-body systems.
@ Non-Gaussianity: Bartolo et al JCAP(04);
Cabass et al JCAP(17)-a1612.
@ Second-order: Malik & Wands CQG(04)ap/03;
Nakamura PRD(06)gq,
PTP(07)gq/06,
PTP(09)-a0812 [gauge-invariant],
a0901-proc [consistency conditions];
Hwang & Noh PRD(07);
Senatore et al JCAP(09)-a0812;
Noh et al PRL(09)
[infrared divergence of Einstein contribution to density power spectrum];
Nakamura PRD(09) [matter fields],
AiA(10)-a1001 [status],
a1001-proc [with scalar field];
Appignani et al JCAP(10), a1002-MG12 [non-canonical scalars, ambiguities];
Hamazaki PRD(11)-a1107 [gradient expansion, leading order];
Anselmi et al JCAP(11) [next-to-leading-order resummations];
Uggla & Wainwright GRG(13)-a1203 [minimal approach],
CQG(14)-a1312 [simple expressions];
Domènech & Sasaki PRD(18)-a1709 [Hamiltonian approach];
Uggla & Wainwright CQG(19)-a1801 [better formulation],
PRD(18)-a1808 [minimal, dynamics];
Wang & Zhang PRD(19)-a1905;
Nakamura a1912-ch [gauge-invariant, rev].
@ Second-order, curvature perturbations: Dias et al JCAP(15)-a1410;
Carrilho & Malik JCAP(16)-a1507 [vector and tensor contributions].
@ Third and higher-order: Hwang & Noh JCAP(07)-a0704 [pressureless fluids];
Christopherson & Malik JCAP(09)-a0909 [gauge transformations];
Prokopec & Weenink JCAP(13)-a1304
[third-order gauge invariant action for scalar-graviton interactions in the Jordan frame];
Nakamura CQG(14)-a1403 [recursive structure];
Nandi & Shankaranarayanan JCAP(15)-a1502 [constraint consistency between two approaches],
JCAP(16)-a1512,
JCAP(16)-a1606,
Nandi a1707-PhD [Hamiltonian analysis].
@ Non-linear effects: Matarrese & Pietroni MPLA(08)ap/07,
JCAP(07)ap,
comment Rosten JCAP(08)-a0711 [renormalization group and structure];
Pietroni JCAP(08)-a0806;
Juszkiewicz et al JCAP(10)-a0901;
Langlois & Vernizzi CQG(10)-a1003 [geometrical approach];
Christopherson CTP(12)-a1111-GRF [signatures of non-linear perturbation theory];
Christopherson et al CQG(11) [comparing two approaches];
Macpherson et al PRD(17)-a1611 [numerical approach].
Approaches and Types
@ Effective field theory: Piazza & Vernizzi CQG(13)-a1307;
Senatore JCAP(15)-a1406 [bias];
Burgess et al JHEP-a1408
[open systems, and the quantum-to-classical transition];
Vlah et al JCAP(15)-a1506 [Lagrangian framework].
@ Gauge-invariant variables: Malik & Matravers GRG(13)-a1206;
Giesel et al CQG(18)-a1801 [using geometrical clocks],
CQG(19)-a1811 [dynamics of Dirac observables].
@ Other approaches:
Bertschinger ap/01-proc;
Bartolo et al PRD(04)ap/03 [scalar + fluid];
Bashinsky PRD(06)ap/04 [cmb and matter];
Carbone & Matarrese PRD(05)ap/04 [evolution framework];
Casadio et al PRD(05)gq/04 [WKB analysis];
Strokov AR(07)ap/06 [hydrodynamical and field approaches];
Enqvist et al PRD(07)gq [covariant];
Carlson et al PRD(09)-a0905 [assessment];
Green & Wald PRD(11)-a1011 [mathematically precise framework];
Uggla & Wainwright CQG(11)-a1102 [simple and concise form];
Matsumoto PRD(11)-a1105 [ΛCDM model];
Miedema a1106 [and the evolution of small-scale inhomogeneities];
Szapudi & Czinner CQG(12)-a1111 [based on Lie-group representations];
Pietroni et al JCAP(12) [coarse-grained];
Hortua & Castañeda a1407-proc [equivalence between formulations];
Rostworowski a1902 [Regge-Wheeler formalism].
@ Long-wavelength perturbations:
Unruh ap/98 [exact solutions];
Carroll et al PRD(14)-a1310 [consistent effective theory].
@ Other types:
Afshordi & Johnson PRD(18)-a1708 [cosmological zero modes].
> Specific spacetimes and theories: see cosmological models;
models and phenomenology [including other theories]; types of black holes
[primordial].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 5 jul 2020