Quantization of Second-Class Constrained Systems  

In General > s.a. BRST quantization; types of constrained systems.
* Dirac prescription: To quantize, impose the constraints strongly.
@ References: Grundling & Hurst CMP(88); Egoryan & Manvelyan TMP(93); Nakamura & Minowa JMP(93); Klauder & Shabanov NPB(98)ht/97; Bratchikov LMP(02) [quantization of Dirac brackets]; Nuramatov & Prokhorov IJGMP(06)qp/05 [reduction to first-class]; Stoilov a1304 [Hilbert-space dimension].

Specific Types of Systems > s.a. Rotor.
@ Particle on a sphere: Kleinert & Shabanov PLA(97); Hong et al MPLA(00).
@ Motion on general submanifolds: Golovnev IJGMP(06)qp/05 [Dirac prescription]; Golovnev RPMP(09)-a0812-conf [canonical quantization]; Liu JMP(13)-a1305 [particle constrained on a curved hypersurface]; de Oliveira JMP(14)-a1310 [particle constrained on a compact surface]; Xun & Liu AP(14) [Dirac quantization].
@ Time-dependent: Gadjiev & Jafarov JPA(07)ht/06.

Approaches
@ Covariant: Lyakhovich & Marnelius IJMPA(01)ht.
@ BRST approach: Batalin & Fradkin NPB(87); Niemi PLB(88); Batalin et al TMP(01)ht, PLB(02)ht/01 [generalized, first + second-class].
@ Path-integral approach: Senjanović AP(76); Batalin & Marnelius MPLA(01)ht [Lagrangian, as gauge theory]; Chesterman ht/02.
@ Hamilton-Jacobi approach: Hong et al qp/01.
@ Faddeev-Jackiw approach: Barcelos-Neto & Wotzasek IJMPA(92).
@ Geometric quantization: Batalin & Lavrov TMP(16)-a1505.
@ Deformation quantization: Batalin et al JMP(05)ht [general method].
@ Other approaches: Amorim & Thibes JMP(99)ht [BFFT aproach]; Nakamura a1108 [star-product quantization, projection-operator method].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2019