Acceleration Radiation  

Bremsstrahlung > s.a. electromagnetism; particle effects; Stückelberg Mechanics.
* Idea: Radiation emitted by an accelerated electric charge.
* Fields: If one solves the wave equation in terms of advanced and retarded radiation fields, one can separate

AC:= \(1\over2\)(Areta + Aadva) ,      AR:= \(1\over2\)(AretaAadva) ;

The first one produces the Coulomb field, the second one is responsible for radiation reaction.
* Larmor equation: The rate of energy loss for an accelerated non-relativistic charged particle is \({\rm d}E/{\rm d}t = 2q^2({\rm d}v/{\rm d}t)^2/3c^3\).
* Examples: Synchrotron radiation.
* Issue in curved spacetime: When a charge is in free fall in a gravitational field, does it radiate or not? The answer is that a local detector, falling with it, would not detect radiation, but a distant one not falling with it would.
@ General references: Holstein & Swift AJP(81)apr [elementary derivation]; Alexander & Gerlach PRD(91)gq/99; Nakel PRP(94); Matsas PLB(96)gq [Rindler space]; Chubykalo & Vlaev IJMPA(99)phy/98; Harpaz & Soker GRG(98)gq, FP(01); Napolitano & Ragusa AJP(99)nov [arbitrary motion]; Leinaas ht/98 [electrons]; Shariati & Khorrami FPL(99)gq/00 [and the equivalence principle]; Peña et al PRD(05) [accelerated observers]; Huang & Lu FP(08) [exact expression]; Glass GRG(08) [rev]; Marino JPA(08) [non-radiating motions]; James et al PRE(11)-a1007 ['endpoint' formulation]; Iso et al PRD(11)-a1011 [and Unruh radiation]; Andersen et al PRL(12) [photon formation length]; Leonov EJP(12); Landulfo et al a1709 [classical and quantum, Larmor and Unruh].
@ Larmor formula: in Eyges 72; Ford & O'Connell PLA(91) [modification]; Cardoso et al PRD(07)ht [in higher dimensions]; Higuchi & Walker PRD(09)-a0908 [quantum corrections, scalar electrodynamics].
@ Uniformly accelerated charge: Fulton & Rohrlich AP(60); Singal GRG(95), GRG(97) [no radiation! – contrary to Parrott GRG(97)gq and consensus]; Parrott FP(02)gq/93 [and equivalence principle]; Almeida & Saa AJP(06)feb [and comoving observers]; Rowland EJP(10) [and Schott energy].
@ Synchrotron radiation: Unruh PRP(98)ht [in electron frame]; Aloisio & Blasi APP(02)ap, APP(02)ap; Margaritondo et al RNC(04) [applications]; Hannay & Jeffrey PRS(05) [electric field]; Athanasiou et al PRD(10) + Karch Phy(10) [from single quarks].
@ Extremely relativistic: Gerlach FP(03)gq; Cardoso et al PRD(03)gq; > s.a. scattering.

Other Mechanisms and Related Topics > s.a. unruh effect \ radiation.
* Freely falling particle in a gravitational field: An observer falling freely with the particle will not observe radiated electromagnetic waves, but an observer with respect to whom the particle is accelerating will observe radiation.
@ Other mechanisms: Iso et al PRD(17)-a1704 [entanglement-induced quantum radiation].
@ In curved spacetime: DeWitt & DeWitt Phys(64); Matsas GRG(94); Parrott gq/93 [conformally flat spacetime], GRG(97)gq; Higuchi et al PRD(97)gq/96, Harpaz & Soker GRG(04)phy/99 [static q]; Akhmedov et al PRD(10)-a1006 [free fall in de Sitter spacetime]; Grøn AJP-a1003 [energy conservation and Schott energy]; Unnikrishnan & Gillies IJMPD(14)-a1408 [remarks]; > s.a. quantum field theory effects in curved spacetime.
@ Accelerating dipole: Power & Thirunamachandran PRS(01), PRS(01); Gerlach PRD(01) [violent acceleration].
@ Accelerated oscillator: Raine et al PRS(91); Kim & Kim PRD(97); Kim PRD(99)gq/98 [in scalar quantum field theory vacuum].
@ And self-force: Hirayama & Hara PTP(00)gq/99; Burko AJP(00)may-gq/99.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 15 may 2021