Bosonic String Theory |
In General
> s.a. string theory (including in non-commutative geometry).
* Nambu-Goto action:
The geometrical one, equal to the area of the 2D world-sheet in
d-dimensional spacetime,
SNG[xa] = −T ∫ |h|1/2 d2y
(by analogy with the relativistic particle); Here, hij
= ηab
xa,i
xb,j
is the metric induced on the world-sheet by the d-dimensional
Minkowski metric ηab,
y i = (σ,
τ) coordinates on the world-sheet, and T the string tension.
* Polyakov action: A gauge-fixed version;
The energy functional for a harmonic map xa:
(2M, γ) →
(dM, η),
SP[xa] = −(T/2) ∫ γij ∂i xa ∂j xb ηab |γ|1/2 d2y ,
which, on variation of γ, gives that γ is the metric induced on 2M by the embedding in d-dimensional Minkowski; This action actually replaces the area of the surface, which is quartic in ∂x, not quadratic,
SP[xa] = ∫ [(∂i xa ∂j xb ηab) (∂k xc ∂l xd ηcd) εik ε jl]1/2 d2y .
* Relationships: These two actions
are classically equivalent, although SP
is more convenient for calculations.
* Constraints: If σ is the spacelike
parameter along the string world-sheet, xa':=
∂xa/∂σ, an
overdot denotes ∂xa/∂τ,
and Pa:= δS /
δ(∂xa/∂τ),
C1(σ):= Pa P a + xa' xa' = 0 , C2(σ):= Pa xa' = 0 .
* Hamiltonian: As in general relativity, it is a combination of constraints,
H = N1(σ) C1(σ) + N2(σ) C2(σ) .
* And physics: Not viable because
of tachyons; Used as a simplified model, but does not give the standard model.
@ General references: Beig IJTP(91) [geometrical aspects of classical dynamics];
Kachkachi PLB(00) [Polyakov action];
Larrañaga JoT-gq/03 [intro];
Duff PLB(06)ht [Nambu-Goto action symmetries];
Sathiapalan IJMPA(08)-a0712 [gauge-invariant action];
Tseytlin a0808-ln [intro];
Banerjeee et al a2008 [action].
@ Hamiltonian formulation:
Kuchař & Torre JMP(89),
in(91) [diffeomorphisms];
Materassi ht/99,
Montesinos & Vergara RMF(03)ht/01-in [Polyakov].
@ Loop variables: Sathiapalan IJMPA(00)ht,
IJMPA(01)ht/00 [mode interaction],
MPLA(02)ht,
MPLA(04)ht,
MPLA(05)ht/04,
MPLA(05),
MPLA(06)ht [and covariant].
@ Related topics: Lunev TMP(90);
Jassal & Mukherjee IJP-ht/01 [propagator in curved spacetime];
Schreiber JHEP(04)mp [Pohlmeyer invariants].
Quantization > s.a. deformation quantization.
* Canonical quantization:
One usually quantizes the Polyakov action using a Fock space representation;
For bosonic strings, one finds that it is consistent only in d = 26
spacetime dimensions; However, there is an algebra of invariant charges which
cannot be consistently quantized in any Fock space representation (D Bahns),
indicating the need for a non-standard representation; Also, one doesn't
really know how to restore gauge invariance like in gauge theory.
* Other approaches: In the
covariant approach, all physical states have positive norm only if d
= 26, and in the light-cone gauge approach, one recovers the lost Lorentz
invariance at the end only if d = 26 (C Lovelace).
@ Canonical: Marnelius NPB(83),
NPB(83) [Polyakov];
Handrich et al MPLA(02)mp;
Bahns JMP(04) [algebra of diffeo-invariant charges];
Moncrief GRG(06) [ADM-type].
@ BRST: Hwang PRD(83);
Kato & Ogawa NPB(83);
Craps & Skenderis JHEP(05).
@ Covariant: Grassi et al CQG(03)ht-in [intro];
Nikolić EPJC(06)ht/05 [De Donder-Weyl covariant canonical formalism].
@ Methods: Mansfield AP(87) [comparison];
Berkovits ht/02-ln [super-Poincaré covariant];
Meusburger & Rehren CMP(03) [algebraic];
Bahns et al CMP(14)-a1204
[Nambu-Goto string effective theory, quantization in arbitrary dimension of the target space].
@ Non-perturbative: Kiritsis AIP(97)ht;
D'Appollonio ht/01 (it);
Motl PhD(01)ht;
Thiemann CQG(06)ht/04 [lqg quantization];
Helling & Policastro ht/04,
ht/06 [Fock vs lqg].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 8 aug 2020