Deformations of Minkowski Spacetime  

In General > s.a. minkowski space.
* Idea: Deformed and non-commutative versions of Minkowski spacetime are motivated by expected features of quantum gravity.
@ References: Majid ht/94; D'Andrea JMP(06)ht/05 [and Snyder's non-commutative geometry, coordinate algebra as operators on Hilbert space]; Meljanac et al EPJC(08)-a0705 [star product realizations]; Freidel & Kowalski-Glikman a0710-proc [symmetries and field theory]; Bentalha & Tahiri PRD(08).
> Related mathematical topics: see non-commutative geometry and non-commutative spacetime; quantum group.
> Related topics in physics: see diffusion; klein-gordon fields; maxwell fields; quantum gravity models.

Kappa-Minkowski Spacetime
* Idea: In κ-Minkowski spacetime, space has a commutative spatial structure, but t does not commute with the spatial coordinates.
@ Reviews: Lukierski a1611-conf [historical perspective].
@ General references: Ghosh PLB(07)ht/06 [and DSR]; Amelino-Camelia et al PLB(09)-a0707 [boosts and space-rotations]; Agostini IJMPA(09)-a0711 [covariant formulation of Noether's theorem]; Dabrowski et al PRD(10)-a0912 [Lorentz covariant]; Meljanac et al MPLA(10) [deformed Snyder spacetime]; Meljanac & Krešić-Jurić IJMPA(11)-a1004 [differential structure]; Dąbrowski & Piacitelli PLA(11)-a1006 [Poincaré-covariant model]; Meljanac et al PRD(11) [Lie-algebraic deformations with undeformed Poincaré algebra]; Amelino-Camelia et al PLB(11)-a1102 [relativity of locality]; Kovačević & Meljanac JPA(12)-a1110; Mercati a1112 [quantum differential geometry and field theory]; Pachoł PhD(11)-a1112 [deformed symmetries and DSR]; Amelino-Camelia et al EPJC(13)-a1206 [and relative locality]; Matassa JGP(14)-a1212 [2D, spectral triple]; Kovačević et al IJMPA(15)-a1307 [hermitian realizations]; Dimitrijević et al Sigma(14)-a1403 [gauge theory]; Anjana & Harikumar PRD-a1501 [spectral dimension]; Pachoł & Vitale JPA(15)-a1507 [κ-Minkowski Lie algebra in any dimension].
@ And matter: Arzano et al CQG(10)-a0908 [Lorentz-invariant field theory]; Smolin GRG(11)-a1004 [propagating particle and locality paradoxes]; Harikumar et al PRD(11)-a1107 [Lorentz force and Maxwell's equations]; Meljanac et al JHEP(11)-a1111 [λφ4 scalar field theory]; Harikumar et al PRD(12) [geodesic equation]; Verma a1410 [Dirac equation]; Aschieri et al a1703 [observables and dispersion relations].
@ Phenomenology: Tamaki et al PRD(02) [and astrophysics]; Harikumar et al MPLA(11)-a0910 [Dirac equation and hydrogen atom spectrum].

Other Deformations
@ References: de Azcárraga & Rodenas JPA(96), qa/96-proc [h-deformed, calculus]; Bauer & Wachter EPJC(03)mp/02 [q-deformed]; Miao PTP(10)-a0912 [non-commutative extension]; Cervantes et al FdP(12)-a1207-conf [quadratic deformation, star product]; Loret et al a1610 [vector-like deformations].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 30 mar 2017