![]() |
In General, Ground-Based > s.a. detection of gravitational
waves [including status, other types of detectors, conceptual issues, detection news].
* Theory: For the
separation between two free particles, δL / L
= \(1\over2\)hTTij
ni n j
+ O(h2).
* 2012: With Advanced LIGO and Virgo
coming online, routine gravitational-wave detections are expected after 2015.
* 2015: Advanced LIGO is in its
commissioning stage, preparing for scientific runs, soon to be followed by Advanced
Virgo; Detections by 2018?
* 2016-02: Detection of signal from
binary-black-hole coalescence announced!
* 2018-10: The US is planning the
Cosmic Explorer, an L-shaped interferometer on the Earth's surface with 40-km arms
(> see website).
* Polarization: 2016, Its detection will
require at least three detectors (and a good signal); In practice, we may have to wait
for Advanced Virgo.
@ Intros, reviews: Giazotto PRP(89);
Finn gq/96 [LIGO as a community];
Barish gq/99-in;
Sintes in(99)gq/00;
Hough & Rowan LRR(00),
update Pitkin et al LRR(11)-a1102;
Robertson CQG(00);
Freise & Strain LRR(10)-a0909;
Bizouard & Papa CRP(13)-a1304;
news at(13)may [status and plans];
Adhikari RMP(14)-a1305;
Saulson 17;
Feder PT(18)oct [status and plans];
Dooley et al a2103-in [and history].
@ Background: Allen & Brustein PRD(97)gq/96;
Maggiore PRP(00)ap/99;
Babusci & Giovannini CQG(00)ap/99,
gq/99 [VIRGO].
@ Networks: Frasca & Papa IJMPD(95);
Bose et al Pra(99)gq;
Wen & Chen PRD(10) [angular resolution];
Schutz CQG(11) [effectiveness].
@ Detector-related topics: Sun et al PRL(96) [Sagnac interferometer];
Saulson AJP(97)jun [operation];
Cohadon et al PRL(99)
+ pn(99)sep [mirror cooling];
Vinet LRR(09) [optical modes and thermal issues];
Cornish PRD(09)-a0910,
Melissinos & Das AJP(10)nov-a1002 [response];
Ben-Aryeh a1010 [using squeezed states and balanced homodyne detection];
Khalili PRD(11)-a1102 [Mach-Zehnder topologies for future detectors];
Graham et al PRL(13)-a1206 [based on optical atomic clocks and atom interferometry];
Hammond et al JMO(14)-a1402 [advanced technologies];
Tinto & Dhurandhar LRR(14) [time-delay interferometry];
Pang & Chen PRD(18)-a1808 [quantum interactions with gravitational waves];
Błaut CQG(19)-a1901 [gauge-independent treatment of response];
Pang & Chen PRD(19)-a1903 [measurement, radiation and decoherence];
Schubert et al a1909 [atom interferometer, between 0.3 and 5 Hz];
Jaén & Talavera a1912 [novel approach].
@ Other related topics: Buonanno & Chen CQG(01)gq/00 [and standard quantum limit];
Faraoni GRG(07)gq [correcting a misconception];
Corda IJMPD(07)gq [importance of magnetic component of waves];
Finn PRD(09)-a0810 [detailed derivation of response];
Fairhurst CQG(11)-a1010,
Klimenko et al PRD(11)-a1101 [source localization];
Hild CQG(12)-a1111-proc [beyond the second generation];
Danilishin & Khalili LRR(12)-a1203 [and quantum measurement theory];
Martynov et al PRA(17)-a1702 [quantum correlation measurements];
Hagihara et al PRD(18)-a1807
[polarization, with Advanced LIGO, Advanced Virgo and KAGRA];
> s.a. physics teaching [undergraduate labs].
LIGO (Laser Interferometer Gravitational-Wave Antenna)
> s.a. detection of gravitational waves [news].
* Idea: A pair of 4-km
interferometers (Hanford, WA, and Livingston, LA, 10 light-ms apart),
by a Caltech, MIT, ..., collaboration.
* Status: 1998, Under
construction; 1999, 40-m prototype operational at Caltech, h
~ 10−19; 2000, Engineering runs;
2002, First data taking run; 2004, Three data runs completed, h
~ 10−22 Hz−1/2
at 100–300 Hz; 2006, Science runs S1–S4 completed, S5 in progress
(2006–2007) with detector at design sensitivity for f > 150 Hz;
2012, Upgrade to Advanced LIGO and engineering runs, with 2nd-generation science
runs expected for 2015; 2014, New interferometer installed in Livingston.
* Frequency range: f
~ 10−104 Hz, limited below by seismic
noise, above by laser shot noise.
* Detection rate: Sensitive to
1 MSun binary coalescence at a few
Mpc, with expected rate ~ 1/13 yr.
* Advanced LIGO: Should be able
to detect inspirals out to 200 Mpc, 1–100/yr; Operation may start in 2007;
2011, Operation may start in 2015; It did, and the Collaboration reported GW150914
in 2016; 2019-04, LIGO and Virgo back on with squeezed light.
* Advanced LIGO Plus: 2019, Expected
to start operating in 2024, will use squeezed light to improve sensitivity [@ news
sn(19)feb].
@ General references:
Finn gq/96-in [research community];
Barish & Weiss PT(99)oct [preview];
González gq/03-proc [status];
Abbott et al RPP(09)-a0711;
Smith et LSC CQG(09)-a0902 [enhanced and advanced];
Waldman et LSC a1103-proc [advanced];
LSC CQG(15)-a1411,
Staley et al CQG(14) [advanced];
news ns(16)apr [plans];
LSC & Virgo CQG(16)
+ CQG+ [detector characterization];
news sn(19)apr,
focus Phys(19)dec [squeezed light].
@ Binary coalescence: LSC et Virgo PRD(10)-a1005;
Abadie et al (LSC + Virgo) PRD(12),
PRD(12);
Aasi et al PRD(13)-a1209 [2009-2010 data];
Singer a1501-PhD [search for binary neutron star mergers];
Berry et al ApJ(15)-a1411 [ns-ns parameter estimation];
Palmese & Conselice PRL(21) [ultradwarf galaxy merger?].
@ Detections: LSC & Virgo, Abbott et al PRL(16)-a1602
+ Berti Phy(16)-a1602 [GW150914];
LSC & Virgo PRD(16)-a1602
and PRL(16)-a1602;
Loeb ApJL(16)-a1602 [electromagnetic counterpart?];
LSC & Virgo PRX(16)-a1606 [improved analysis];
LSC & Virgo PRL(16)-a1606 [GW151226],
PRX(16)-a1606 [full results];
Abbott et al PRL(17)-a1706
+ news pw(17)jun [GW170104];
news sn(17)sep [LIGO+Virgo triple detection];
news sn(19)may [status];
news sn(20)sep [intermediate-mass black hole].
@ Bursts: Weinstein for LIGO CQG(04)gq/03;
Abbott et LSC PRD(05)gq [GRB030329],
PRD(05)gq;
LIGO CQG(07)-a0704 [4th science run];
Thorne et LSC a0706-proc;
Abbott et LSC PRD(09)-a0904 [from cosmic (super)strings],
PRD(09)-a0904 [high-frequency];
LSC and Virgo a1908 [supernovae, search].
@ Periodic sources: Abbott et LSC PRD(05)gq [neutron star + neutron star];
Abbott et al PRD(06) [black hole + black hole];
LSC PRD(07)gq/06 [data from S2 run];
Abbott et LSC PRD(08)-a0704,
PRD(08)-a0708,
PRD(08)-a0712 [data from S3 and S4 runs];
LSC PRD(09)-a0901 [data from S5 run].
@ Stochastic background: Abbott et LSC PRD(04)gq/03;
LSC ApJ(07)ap/06;
Abbott et LIGO + Allegro PRD(07) [cross-correlation analysis];
Fotopoulos et LSC JPCS(08)-a0801;
Abadie et al PRD(12) [bounds at 600-1000 Hz].
@ Related topics: González CQG(00)gq [thermal noise in suspension];
Kocsis ApJ(13)-a1211 [SMBHs, prospects for LIGO-Virgo detections].
Other Detectors
> s.a. space-based gravitational-wave interferometers.
* VIRGO: Italian-French
collaboration, 3-km arms, near Pisa, very similar to LIGO; 2004, Being commissioned;
2006, Science run; 2011-2012, Advanced Virgo may start operating in 2015.
* GEO600: British-German, near
Hannover; 2004, Operating, more advanced techniques than LIGO I but shorter;
2006, Beginning of continuous operation [@ news
sr(06)jun];
> s.a. website.
* TAMA300: Japanese collaboration
("prototype for 3-km"), near Tokyo; 2004, Taking data since before LIGO.
* AIGO: 2006, Proposed but not
accepted, its future is not certain.
* Einstein Telescope (ET): 2010,
A Europen proposal for a triangle configuration of underground tunnels, three interferometers
with 10-km arms cooled to around 10 K, conceived in 2008; 2020, It is currently at an advanced stage of design.
* KAGRA: 2019, An underground
interferometer cooled to 20 K with 3-km-long arms in Kamioka, Japan; 2020,
Recently began operations.
* LIGO-India: 2020, It is hoped that it will be operational after 2025.
@ VIRGO: Hellemans SA(03)aug;
Spallicci et al CQG(05)gq/04 [advanced];
Acernese et al CQG(05)gq/04,
CQG(06) [status];
Virgo CQG(08)-a0803 [search in connection with GRB 050915a];
Sengupta JPCS(10)-a0911 [LIGO-VIRGO search for coalescing binaries];
Accadia et al CQG(11) [status];
LSC & Virgo a1203 [sensitivity achieved];
Virgo Collaboration CQG(15)-a1408 [Advanced Virgo].
@ GEO600: Schutz PTPS(99)gq-in;
Balasubramanian et al CQG(05)gq;
Hild CQG(06) [status];
Lück et al JPCS(10)-a1004 [upgrade].
@ TAMA300: Tagoshi et al PRD(01);
Ando et al PRD(05)gq/04.
@ Einstein Telescope: Bosi & Porter GRG(11)-a0910 [data analysis];
Sathyaprakash et (multi) al a1108-proc,
CQG(12)-a1206-proc [scientific potential and objectives];
news livesci(18)apr;
Maggiore et al JCAP(20)-a1912 [the science case];
Amann et al a2003 [site selection criteria].
@ KAGRA:
KAGRA Collaboration a1710-proc [status];
Akutsu et al nAstr(19)-a1811,
CQG(19)-a1901,
news sn(19)jan [KAGRA];
Michimura et al a1906-MG15,
PRD(20)-a2006 [improvements];
Akutsu et al a2005,
PTEP-a2008,
PTEP-a2009 [overview].
@ Related topics: Sato et al PRD(04)gq [LISM, underground];
Nishizawa et al PRD(08) [at 100 MHz];
Yu & Tinto GRG(11)-a1003-proc [single-arm interferometers];
Punturo & Somiya IJMPD(13)-MG13;
Harms et al PRD(13)-a1308 [low-frequency terrestrial detectors];
news ns(14)feb [India];
Hu & Zhang a1707 [using weak measurements];
Park et al a1906 [stellar interferometry];
Sedda et al CQG(20)-a1908 [in the dHz range];
Liu & Gong a2001 [3D proposal];
Adya et al a2004 [Asian region, status];
news Phys(20) [high-frequency tabletop detector];
Hu & Zhang a2007 [broadband high-frequency interferometer];
Ackley et al PASA(20)-a2006 [NEMO kHz-band detector];
Saleem et al a2105 [LIGO-India].
Specific Sources and Data Analysis > s.a. gravitational-wave
background [including primordial]; sources of gravitational waves.
* Binary inspirals: Because of the
very low signal-to-noise ratio, the main method used is matched filtering, the
comparison of data with a large set of templates developed for different parameter
sets; Since the physics of binaries is simple, there are only 8 parameters (2
masses, 2 spin magnitudes, 2 spin directions), which can be reduced to 7 using
overall mass scaling and 6 using statistical arguments on spins; Templates presumably
need to be as accurate as O(v6);
2010, Current ones obtained using PN techniques are good enough for (possible)
detection, but not for parameter estimation; For better ones, have to speed up
numerical simulations considerably; To detect the weaker waves, may have to extract
signal from many months of data; > s.a. numerical
simulations of black holes.
* Other sources: Bursts,
stochastic background, continuous sources (rotating stars, etc).
@ General references:
Finn FGCS-gq/99 [data archive];
Królak gq/99;
Sahay PhD(01)gq/02;
Abbott et al (LIGO and Virgo) LRR(16) [observing transients].
@ Techniques: Tagliaferri et al ap/99-proc [neural networks];
Pradier et al IJMPD(00)gq-proc,
PRD(01)gq/00 [filters, triggers];
Black & Gutenkunst AJP(03)apr [intro];
Hild et al CQG(10)-a0906 [proposal of xylophone configuration];
Krastev a1908 [neural networks, binary neutron star mergers].
@ Noise: Thorne & Winstein PRD(99)gq/98;
Creighton PRD(99)gq;
Allen et al gq/99;
González SPIE(03)gq;
Dolesi et al PRD(11);
Thrane et al PRD(14) [correlated noise];
Powell et al CQG(15)-a1505 [classifying noise transients];
Danilishin a1903-LRR [quantum noise suppression];
> s.a. metric fluctuations.
@ Bursts: Searle et al CQG(09)-a0809 [unmodeled].
@ Binaries:
Ryan PRD(97) [massive body multipoles];
Allen et al PRL(99) [bounds from 40-m prototype];
Martel AIP(99)gq,
& Poisson PRD(99)gq [eccentric];
Dhurandhar & Vecchio PRD(01)gq/00;
Abbott et al & Akutsu et al PRD(06)
[neutron star + neutron star, LIGO+TAMA300];
Mukhopadhyay et al PRD(06)gq,
PRD(09) [coherent vs coincident strategies];
Corvino et al a1203 [methods to estimate detection rates].
@ Related topics: Jaranowski et al PRD(98)gq,
& Królak PRD(00)gq/99 [spinning neutron stars];
Anderson & Balasubramanian PRD(99)gq [unmodeled sources];
Yunes & Pretorius PRD(09)-a0909 [theoretical bias and post-Einsteinian framework];
Leaci JPCS(12)-a1201 [continuous wave signals].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 10 may 2021