Types of Fiber Bundles |

**Differentiable Fibre Bundles**

$ __Def__: A fiber bundle
(*B*, *E*, *G*, *F*, *π*), where
*B*, *E*, *G*, *F* are differentiable manifolds,
*π* is a differentiable mapping, the covering {*U*_{j}}
of *B* is an admissible atlas, and the transition functions *g*_{jk}

are differentiable.

**Trivial Fiber Bundles**

* __Triviality Criteria__:

*- P*(*E*)
trivial iff *P*(*E*) admits a cross-section;

*- E* trivial
iff the transition functions can be written as *g*_{ij}
= *λ*_{i}(*x*)
*λ*_{j}^{–1}(*x*);

*- P*(*E*) trivial implies *E* trivial;

*- B* contractible implies *E* trivial;

*- F* contractible implies *E* has a cross-section;

*- G* contractible implies *E* trivial.

* __Results__: All SU(2) bundles over 3-manifolds are trivial.

**Vector Bundles** > s.a. Jet Bundles; tangent bundles.

* __Idea__: A topological
space *E*, a continuous projection *π*: *E* → *B*,
and a vector space (over a field \(\mathbb K\)) structure on each fiber *π*^{–1}(*x*),
with local triviality, i.e., a fiber bundle with *F* = \(\mathbb K\)^{n}
and *G* = GL(*n*, \(\mathbb K\)).

@ __References__: in Milnor & Stasheff 74, ch 2–3.

> __Online resources__: see MathWorld page; Wikipedia page.

**Tensor Bundles**

> __Online resources__: see Encyclopedia of Mathematics
page.

**Other Fiber Bundles and Additional Structure** > s.a. curvature;
Hopf Fibration; Jet; principal
fiber bundle; sheaf; Universal Bundle.

* __Triviality criteria__:
An *R*-bundle is trivial iff it admits *n* nowhere-dependent cross-sections.

@ __ General references__: Trautman RPMP(76) [classification, and use in physics];
Crowley & Escher DG&A(03)
[S^{3}-bundles over S^{4}];
Lerman JGP(04) [contact fiber bundles].

@ __Generalizations__: Manton CMP(87) [discrete bundles];
Brzeziński & Majid CMP(98) [coalgebra bundles];
Vacaru & Vicol IJMMS(04)m.DG [higher-order, and Finsler];
Bruce et al a1605-proc [graded bundles].

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 12 may 2016