|  Summations | 
Examples > s.a. series [including Taylor series].
* Simple powers:
    \[ \sum_{k=1}^n k = { \textstyle{1\over2}}\,n(n+1)\;,\qquad
    \sum_{k=1}^n k^2 = { \textstyle{1\over6}}\,n(n+1)(2n+1)\;,\qquad
    \sum_{k=1}^n k^3 = { \textstyle{1\over4}}\,n^2(n+1)^2\;. \]
* Inverse powers:
    \[ \sum_{k=1}^\infty {1\over k^2} = \zeta(2) = {1\over3}\,\psi_1(1/2)
    = {\pi^2\over6} \quad{\rm(the\ Basel\ problem)\;,}\\
    \sum_{k=1}^\infty {1\over k\,(k+1)} = 1\;,\qquad \sum_{k=1}^\infty
    {1\over k\,(k+1)\,(k+2)} = {1\over4}\;,
    \qquad \sum_{k=1}^\infty {1\over k\,(k+1)\ldots(k+p)} = {1\over p\,(p!)}\;. \]
* Geometric and related sums:
    \[ \sum_{i=m}^n q^i = {q^m-q^{n+1}\over1-q}\;, \qquad
    \sum_{i=0}^n (i+1)\,q^i = {1 - (n+2)q^{n+1} + (n+1)q^{n+2}\over1-q}\;.  \]
* Binomial:
    \[ \matrix{  {\displaystyle\sum_{k=0}^n {n\choose k} = 2^n}\;,\hfil
    &{\displaystyle\sum_{k=0}^n \,(-1)^k {n\choose k} = 0}\;,\hfil \cr
    {\displaystyle\sum_{k=0}^n k\,{n\choose k} = n\,2^{n-1}}\;,\hfil
    &{\displaystyle\sum_{k=0}^n \,(-1)^k k\,{n\choose k} = 0}\;,\hfil \cr
    {\displaystyle\sum_{k=0}^n {n\choose k}^{\!2} = {2n\choose n}}\;,\hfil
    &{\displaystyle\sum_{k=0}^m {n+k\choose n} = {n+m+1\choose n+1}\;,}\hfil \cr
    {\displaystyle\sum_{k=0}^m {k\choose n} = {m+1\choose n+1}}\;,\qquad\hfil 
    &{\displaystyle\sum_{k=0}^m k\,{k\choose m} = (n+1)\,{m+1\choose n+2}
    + n\,{m+1 \choose n+1}}\;.\hfil } \]
  @ References: CRC tables;
    Valean 19 [derivations and difficult cases].
  @ Types of sums: Datta & Agrawal Math(17)-a1609 [trigonometric];
    Silagadze MI(19)-a1908 [Basel problem].
  > Online resources:
    see polysum page;
    Wikipedia page. 
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 aug 2019