PHYS222
Uncertainty calculations for index of refraction calculations
Snell's Law is $\quad n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r} \quad$ and can be written as $\quad \frac{n_{r}}{n_{i}}=\frac{\sin \theta_{i}}{\sin \theta_{r}}$
If we look at a ray going from air into our plastic block ($\left.n_{i}=n_{\text {air }}=1.0003=1.000\right)$ Eq-1 becomes

$$
n_{r}=\frac{\sin \theta_{i}}{\sin \theta_{r}} .
$$

Eq-1

The fractional uncertainty for Eq-2 is given by (where uncertainty of is considered negligible)

$$
\frac{\delta n_{r}}{n_{r}}=\sqrt{\left(\frac{\delta \sin \theta_{i}}{\sin \theta_{i}}\right)^{2}+\left(\frac{\delta \sin \theta_{r}}{\sin \theta_{r}}\right)^{2}}
$$

By definition

$$
\delta \sin \theta=\left|\frac{d \sin \theta}{d \theta}\right| \delta \theta=|\cos \theta| \delta \theta .
$$

The fractional uncertainty can thus be written as $\frac{\delta \sin \theta}{|\sin \theta|}=|\cot \theta| \delta \theta$
Substituting Eq-3 into Eq-2 we have

$$
\frac{\delta n_{r}}{n_{r}}=\sqrt{\left[\left(\cot \theta_{i}\right)(\delta \theta)\right]^{2}+\left[\left(\cot \theta_{r}\right)(\delta \theta)\right]^{2}}
$$

This is the equation you use. -(Note above that $\delta \theta_{i}=\delta \theta_{r}=\delta \theta=0.5$ degrees and $\delta \theta$ must be in radians).

Example

For a light ray which travels from air into a plastic block the following measurements were made:

$$
\theta_{i}=33.0 \pm 0.5 \text { degrees , } \theta_{r}=22.0 \pm 0.5 \text { degrees }, \quad \delta \theta=0.5 \text { degrees }=0.00873 \mathrm{rads}
$$

The calculated $n_{r}=1.454$ (from Snell's Law)
Substituting the values above into Eq-4 we have

$$
\begin{aligned}
& \frac{\delta n_{r}}{1.454}=\sqrt{[(\cot 33)(0.00873 \mathrm{rads})]^{2}+[(\cot 22)(0.00873 \mathrm{rads})]^{2}} \\
& \delta n_{r}=1.454(0.02545)=0.0370 \\
& \delta n_{r}=0.04
\end{aligned}
$$

Thus $n_{r}=1.45 \pm 0.03 \quad$ or $\quad n_{r}=1.45 \pm 2 \%$

Technically, you should do the uncertainty calculations for each set of calculations and combine your results. For brevity you will do only one uncertainty calculation and use that value for the "average uncertainty" of all your measurements. This uncertainty calculation will be on quiz next week!!!

