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Non-Ideal Gases. 2: Two Examples, and Cluster Expansion

• Idea: Apply the general formalism developed in Part B to the calculation of the second virial coefficient
B2(T ) for two examples of approximate, phenomenological forms of the interparticle potential φ(rij).

C. Application: Potential with Hard-Core Term

• Setup: For a classical gas,
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• Second virial coefficient: From the general result, classically we find (recall that Z1 = V/λ3
T ),
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where the Mayer function f(r) := e−βφ(r) − 1, contrary to φ(r), is well behaved as r → 0. Notice that the
cluster expansion generalizes this last expression to give all Bn.

• Qualitative behavior of B(T ): To proceed, we need to know something about v(r). Let’s assume that

φ(r) = φhc(r) + φlr(r)

is well approximated by a sum of an infinite potential wall (“hard core”) at r = r0, and a weakly attractive
potential for r > r0 (? plot). Then
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where b = (2π/3) r3
0N is proportional to the molecular volume, and a = 2π

∫∞
0

dr r2 w(r)N2 arises from the
attractive part of the potential. This tells us that at high temperatures the first term dominates and B(T ) is
a positive constant, an added pressure coming from the fact that particles have a smaller available volume.
At low temperatures, the second term dominates and B(T ) is negative, with an increasing magnitude as T
decreases. The B(T ) we obtained is of the same form as the second virial coefficient for the van der Waals
gas (in the form in which a and b are intensive parameters).

D. Application: The Lennard-Jones Potential

• Idea: Use for φ(r) the phenomenological Lennard-Jones potential, an expression that approximates well
the measured potential for some gases,
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.

• Second virial coefficient: Introducing dimensionless variables r∗ := r/σ and T ∗ := k
B
T/ε, the general

expression for B2 in terms of φ(r) gives
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where we have integrated by parts in the second step.



27 apr 2025 non-ideal gases 2 . L23–2

E. Classical Cluster Expansion for the Partition Function

• Setup: We will follow the classical theory developed by J E Mayer and collaborators starting in 1937.
Using the potential φ(r) define the 2-particle Mayer function fij = f(rij) := e−βφ(rij) − 1. Then
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(Notice that for an ideal system f(rij) = 0, and limr→0 fij(r) = −1.) The integrand can be expanded as∏
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We can represent each term in the right-hand side as a graph on N vertices, one for each particle, with one
edge for each fij factor (no two vertices are connected by more than one edge). Every graph appears exactly

once in the sum, and unconnected vertices in each graph contribute
∫
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and we need a way of classifying and evaluating the contributions of all graphs.

• Clusters: An “l-cluster” is a set of l connected vertices; two clusters are considered distinct if their topology
and/or vertex labels differ. We identify each l-cluster with the corresponding product of fijs and define
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For example, there is one (trivial) 1-cluster for every vertex, one 2-cluster for any two vertices (also trivially),
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four 3-clusters on any three vertices, many (more than 36) 4-clusters on any four vertices, and so on. Then
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where ml is the number of distinct l-clusters in each term, and the ∗ in the first summation stands for the

condition
∑N
l=1 l ml = N .

Thermodynamics

• Grand potential: Again from the general expression for Ω in a grand canonical ensemble, we get
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• Equation of state: From the general relations p = −Ω/V and N̄ = −∂Ω/∂µ|T,V we get
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so, after eliminating z,
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with coefficients al that can be calculated; for example, a1 = 1, a2 = −b2 (so B2 = −b2 λ3
T ), etc.

Reading

• References: Not covered in Kennett’s book; Pathria & Beale, Ch 10; Halley, Ch 6; Mattis & Swendsen, §§
4.5–4.8; Plischke & Bergersen, § 5.1; Reichl, § 6.3; Reif, §§ 10.3–10.5; Schwabl, §§ 5.3–5.4.


